题目内容
20.三个男生与三个女生站一排,若女生甲不站排头与排尾,三个男生中有且仅有两个男生相邻,则这样的排法数为( )A. | 432 | B. | 288 | C. | 216 | D. | 144 |
分析 先考虑3位女生中有且只有两位相邻的排列共有C32A22A42A33,减去在3男生中有且仅有两位相邻且女生甲在两端的排列.
解答 解:先考虑3位女生中有且只有两位相邻的排列
共有C32A22A42A33=432种,
在3男生中有且仅有两位相邻且女生甲在两端的排列有2×C32A22A32A22=144种,
∴不同的排列方法共有432-144=288种
故选B.
点评 本题考查排列组合及简单的计数原理,本题解题的关键是在计算时要做到不重不漏,把不合题意的去掉.
练习册系列答案
相关题目
11.已知圆柱O′O″在球O的内部,且上下底面的圆周分别在球面上,球心O恰好位于线段O′O″的中心位置,已知圆柱的轴截面为正方形,且球的直径为4,则圆柱的体积为( )
A. | 无法确定 | B. | 8$\sqrt{2}$π | C. | 2$\sqrt{2}$π | D. | 4$\sqrt{2}$π |
5.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,已知函数f(x)=$|\begin{array}{l}{π}&{x+1}\\{x-1}&{x}\end{array}|$,且△ABC是锐角三角形,则下列不等式成立的是( )
A. | f(sinA)>f(sinB) | B. | f(cosA)>f(cosB) | C. | f(sinA)>f(cosB) | D. | f(cosA)>f(sinB) |