题目内容
已知向量
,
,函数
.
(1)若
,求
的最大值并求出相应
的值;
(2)若将
图象上的所有点的纵坐标缩小到原来的
倍,横坐标伸长到原来的
倍,再向左平移
个单位得到
图象,求
的最小正周期和对称中心;
(3)若
,求
的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055500896738.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055500912875.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055500927692.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055500958669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055500974447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055500990266.png)
(2)若将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055500974447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501036338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501052291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501068413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501083442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501083442.png)
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240555011301014.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501146509.png)
(1)
,
;(2)
,
(3)
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501177679.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501192524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501224395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501239708.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501255643.png)
试题分析:根据向量数量积的坐标运算,可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240555012701049.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055500958669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501317608.png)
范围,再利用正弦函数的单调性去求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055500974447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055500990266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501380693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501411798.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240555014261177.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501458717.png)
求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501473839.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501489964.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501504659.png)
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501536709.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240555015511562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240555015821211.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501598735.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501192524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501177679.png)
(2)由题意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240555017851142.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501083442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501224395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501239708.png)
(3)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240555014261177.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501894756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240555019101019.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240555019411081.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240555019572197.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501972870.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055501504659.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目