题目内容
【题目】如图,三棱柱中,四边形四边均相等,点在面的射影为中点.
(1)证明:;
(2)若,,,求点到面的距离.
【答案】(1)见解析;(2).
【解析】
(1)由点在面的射影为中点可得,由菱形的性质可得,利用线面垂直的判定定理可得平面,从而可得结果;(2)在平面内作,垂足为,连接,在平面内作,垂足为.可证明平面,进而可得结果.
(1)证明 连接BC1,则O为B1C与BC1的交点.
因为侧面BB1C1C为菱形,所以B1C⊥BC1.
又AO⊥平面BB1C1C,所以B1C⊥AO,
故B1C⊥平面ABO.
由于AB平面ABO,故B1C⊥AB.
(2)在平面BB1C1C内作OD⊥BC,垂足为D,连接AD.
在平面AOD内作OH⊥AD,垂足为H.
由于BC⊥AO,BC⊥OD,
故BC⊥平面AOD,所以OH⊥BC.
又OH⊥AD,
所以OH⊥平面ABC.
因为∠CBB1=60°,所以△CBB1为等边三角形.
又BC=1,可得.由于AC⊥AB/span>1,所以.
由OH·AD=OD·OA,且,得.
练习册系列答案
相关题目