题目内容
【题目】已知函数f(x)=lg(ax-bx)(a>1>b>0).
(Ⅰ)求f(x)的定义域;
(Ⅱ)当x∈(1,+∞)时,f(x)的值域为(0,+∞),且f(2)=lg2,求实数a、b的值.
【答案】(Ⅰ)(0,+∞)(Ⅱ)a=,b=
【解析】
(Ⅰ)由ax﹣bx>0,(a>1>b>0)得,由此求得f(x)的定义域;
(Ⅱ)令g(x)=ax﹣bx,可得x∈(1,+∞)时,g(x)>1.由g(1)=1,可得a﹣b=1 ①,又f(2)=lg2,故a2﹣b2=2 ②,由①②求得a、b的值.
解:(Ⅰ)由ax-bx>0,得ax>bx,
即,
∵a>1>b>0,∴,则x>0.
∴f(x)的定义域为(0,+∞);
(Ⅱ)令g(x)=ax-bx,
∵a>1>b>0,∴g(x)在( 0,+∞)上为增函数.
由当x∈(1,+∞)时,f(x)的值域为(0,+∞),可得x∈(1,+∞)时,g(x)>1,
∴g(1)=1,可得a-b=1 ①,
又f(2)=lg2,∴a2-b2=2 ②,
联立①②得:a=,b=.
练习册系列答案
相关题目