题目内容
某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在三棱柱ABC-A1B1C1的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有( )
分析:根据题意,分3步进行,第一步,为A、B、C三点选灯泡的颜色,由排列数公式可得其情况数目,第二步,在A1、B1、C1中选一个装第4种颜色的灯泡,第三步,为剩下的两个灯选颜色,分类讨论可得其情况数目,进而由分步计数原理,计算可得答案.
解答:
解:根据题意,每种颜色的灯泡都至少用一个,即用了四种颜色的灯进行安装,分3步进行,
第一步,为A、B、C三点选三种颜色灯泡共有A43种选法;
第二步,在A1、B1、C1中选一个装第4种颜色的灯泡,有3种情况;
第三步,为剩下的两个灯选颜色,假设剩下的为B1、C1,若B1与A同色,则C1只能选B点颜色;若B1与C同色,则C1有A、B处两种颜色可选.故为B1、C1选灯泡共有3种选法,即剩下的两个灯有3种情况,
则共有A43×3×3=216种方法.
故选C.
![](http://thumb.zyjl.cn/pic3/upload/images/201203/20/6f48ed88.png)
第一步,为A、B、C三点选三种颜色灯泡共有A43种选法;
第二步,在A1、B1、C1中选一个装第4种颜色的灯泡,有3种情况;
第三步,为剩下的两个灯选颜色,假设剩下的为B1、C1,若B1与A同色,则C1只能选B点颜色;若B1与C同色,则C1有A、B处两种颜色可选.故为B1、C1选灯泡共有3种选法,即剩下的两个灯有3种情况,
则共有A43×3×3=216种方法.
故选C.
点评:本题考查了排列、组合的应用与分类、分步计数原理的运用,在此类问题中,合理分类,恰当分步是解题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目