题目内容
质点M的运动方程为s=2t2-2,则在时间段[2,2+Δt]内的平均速度为( ).
A.8+2Δt | B.4+2Δt | C.7+2Δt | D.-8+2Δt |
A
解析
练习册系列答案
相关题目
已知函数的导函数如图所示,若为锐角三角形,则下列不等式一定成立的是( )
A. | B. |
C. | D. |
已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:
①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;
④f(0)f(3)<0.
其中正确结论的序号是( )
A.①③ | B.①④ |
C.②③ | D.②④ |
曲线y=-x3+3x2在点(1,2)处的切线方程为 ( ).
A.y=3x-1 | B.y=-3x+5 |
C.y=3x+5 | D.y=2x |
已知定义域为R的奇函数f(x)的导函数为f′(x),当x≠0时,f′(x)+>0,若a=f,b=-2f(-2),c=ln f(ln 2),则下列关于a,b,c的大小关系正确的是( )
A.a>b>c | B.a>c>b |
C.c>b>a | D.b>a>c |
已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f′ (x),f′(x)≤0的解集为{x|-2≤x≤3},若f(x)的极小值等于-115,则a的值是( )
A.- | B. | C.2 | D.5 |
设f(x),g(x)在[a,b]上可导,且f′(x)>g′(x),则当a<x<b时,有( )
A.f(x)>g(x) |
B.f(x)<g(x) |
C.f(x)+g(a)>g(x)+f(a) |
D.f(x)+g(b)>g(x)+f(b) |
函数y=f′(x)是函数y=f(x)的导函数,且函数y=f(x)在点P(x0,f(x0))处的切线为l:y=g(x)=f′(x0)·(x-x0)+f(x0),F(x)="f(x)-g(x)," 如果函数y=f(x)在区间[a,b]上的图象如图所示,且a<x0<b,那么( )
A.F'(x0)=0,x=x0是F(x)的极大值点 |
B.F'(x0)=0,x=x0是F(x)的极小值点 |
C.F'(x0)≠0,x=x0不是F(x)的极值点 |
D.F'(x0)≠0,x=x0是F(x)的极值点 |