题目内容

已知边长分别为a、b、c的三角形ABC面积为S,内切圆O半径为r,连接OA、OB、OC,则三角形OAB、OBC、OAC的面积分别为,由,类比得四面体的体积为V,四个面的面积分别为,则内切球的半径R=_________________

解析试题分析:设球心为O,分别连结四个顶点与球心O,将四面体分割成底面面积分别为高为R的三棱锥,其体积分别为,由V=+++得,R=.
考点:类比推理

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网