题目内容
【题目】已知椭圆的短轴长为4,离心率为,斜率不为0的直线l与椭圆恒交于A,B两点,且以AB为直径的圆过椭圆的右顶点M.
(1)求椭圆的标准方程;
(2)直线l是否过定点,如果过定点,求出该定点的坐标;如果不过定点,请说明理由.
【答案】(1);(2)直线过定点.
【解析】
(1)由题可知,,再结合,即可求出的值,从而得出椭圆的标准方程;
(2)因为直线l斜率不为,所以设直线l:x=ty+m,联立直线方程和椭圆方程,利用根与系数的关系得,,,再根据以AB为直径的圆过椭圆的右顶点,可得0,从而求出,即可得出定点坐标.
(1)由题,,
所以椭圆的标准方程为.
(2)由题设直线:,,
联立直线方程和椭圆方程,得,
∴,,.
因为以AB为直径的圆过椭圆的右顶点,
所以,
整理得或,
又当时,直线过椭圆右定点,此时直线与直线不可能垂直,
∴,
∴直线过定点.
【题目】手机作为客户端越来越为人们所青睐,通过手机实现衣食住行消费已经成为一种主要的消费方式.在某市,随机调查了200名顾客购物时使用手机支付的情况,得到如下的2×2列联表,已知从使用手机支付的人群中随机抽取1人,抽到青年的概率为.
(I)根据已知条件完成2×2列联表,并根据此资料判断是否有99.5%的把握认为“市场购物用手机支付与年龄有关”?
2×2列联表:
青年 | 中老年 | 合计 | |
使用手机支付 | 120 | ||
不使用手机支付 | 48 | ||
合计 | 200 |
(Ⅱ)现采用分层抽样的方法从这200名顾客中按照“使用手机支付”和“不使用手机支付”抽取一个容量为10的样本,再从中随机抽取3人,求这三人中“使用手机支付”的人数的分布列及期望.
附:
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
【题目】户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体650人中采用分层抽样的办法抽取50人进行问卷调查,得到了如下列联表:
喜欢户外运动 | 不喜欢户外运动 | 总计 | |
男性 | 5 | ||
女性 | 10 | ||
总计 | 50 |
已知在这50人中随机抽取1人,抽到喜欢户外运动的员工的概率是.
(1)请将上面的列联表补充完整;
(2)求该公司男、女员工各多少人;
(3)在犯错误的概率不超过0.005的前提下能否认为喜欢户外运动与性别有关?并说明你的理由.
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)