题目内容
2.已知函数$f(x)=\left\{\begin{array}{l}{log_2}(x+1),x>0\\{({x-1})^2},x≤0.\end{array}\right.$则f(1)=1.分析 直接利用分段函数求解函数值即可.
解答 解:函数$f(x)=\left\{\begin{array}{l}{log_2}(x+1),x>0\\{({x-1})^2},x≤0.\end{array}\right.$,
则f(1)=log2(1+1)=1.
故答案为:1.
点评 本题考查分段函数的应用,函数值的求法,考查计算能力.
练习册系列答案
相关题目
12.“$\frac{ln3-5}{3}$≤k≤$\frac{ln2-1}{2}$”是“关于x的不等式lnx+x+1>x2+kx有且仅有2个正整数解”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
17.下列函数是幂函数的是( )
A. | $y=2{x^{\frac{1}{2}}}$ | B. | y=x3+x | C. | y=2x | D. | $y={x^{\frac{1}{2}}}$ |
14.已知△ABC的周长为20,且顶点B(-4,0),C(4,0),则顶点A的轨迹方程是( )
A. | $\frac{x^2}{36}+\frac{y^2}{20}$=1(y≠0) | B. | $\frac{x^2}{20}+\frac{y^2}{36}$=1(y≠0) | ||
C. | $\frac{x^2}{6}+\frac{y^2}{20}$=1(y≠0) | D. | $\frac{x^2}{20}+\frac{y^2}{6}$=1(y≠0) |