题目内容

2.已知函数$f(x)=\left\{\begin{array}{l}{log_2}(x+1),x>0\\{({x-1})^2},x≤0.\end{array}\right.$则f(1)=1.

分析 直接利用分段函数求解函数值即可.

解答 解:函数$f(x)=\left\{\begin{array}{l}{log_2}(x+1),x>0\\{({x-1})^2},x≤0.\end{array}\right.$,
则f(1)=log2(1+1)=1.
故答案为:1.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网