题目内容

如图,是半径为2,圆心角为的扇形,是扇形的内接矩形.
(Ⅰ)当时,求的长;
(Ⅱ)求矩形面积的最大值.
(Ⅰ) (Ⅱ) 

试题分析:(Ⅰ)由图形的对称性作出辅助线,用三角函数求出相关线段长度;(Ⅱ)设∠EOC=θ,与(Ⅰ)类似用三角函数表示出相关线段长度和矩形ABCD的面积,继而求关于θ的三角函数的最大值.
试题解析:如图,记的中点为E,连结OE,OC,交BC于F,交AD于G,则∠DOG=60°.
设∠EOC=θ(0°<θ<60°).

(Ⅰ)当时,θ=30°.
在Rt△COF中,OF=OCcos30°=,CF=OCsin30°=1.
在Rt△DOG中,DG=CF=1,OG=
所以CD=GF=OF-OG=
(Ⅱ)与(Ⅰ)同理,
BC=2CF=4sinθ,CD=OF-OG=2cosθ-=2cosθ-sinθ.
则矩形ABCD的面积
S=BC·CD=4sinθ(2cosθ-sinθ)=4sin2θ- (1-cos2θ)=sin(2θ+30°)-
因为30°<2θ+30°<150°,故当2θ+30°=90°,
即θ=30°时,S取最大值
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网