题目内容
19.设an=$\left\{\begin{array}{l}{{2}^{n-1},1≤n≤2,n∈N}\\{\frac{1}{{3}^{n}},n≥3,n∈N}\end{array}\right.$数列{an}的前n项和Sn,则$\underset{lim}{n→∞}$Sn=3$\frac{1}{18}$.分析 利用无穷等比数列的求和公式,即可求出极限.
解答 解:∵an=$\left\{\begin{array}{l}{{2}^{n-1},1≤n≤2,n∈N}\\{\frac{1}{{3}^{n}},n≥3,n∈N}\end{array}\right.$数列{an}的前n项和Sn,
∴$\underset{lim}{n→∞}$Sn=1+2+$\frac{\frac{1}{27}}{1-\frac{1}{3}}$=3$\frac{1}{18}$.
故答案为:3$\frac{1}{18}$.
点评 本题考查数列的极限,考查无穷等比数列的求和公式,比较基础.
练习册系列答案
相关题目
9.如图所示,A,B,C是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上的三个点,AB经过原点O,AC经过右焦点F,若BF⊥AC且|BF|=|CF|,则该双曲线的离心率是( )
A. | $\frac{\sqrt{10}}{2}$ | B. | $\sqrt{10}$ | C. | $\frac{3}{2}$ | D. | 3 |
14.已知$α∈(\frac{π}{2},\frac{3π}{2}),tan(α-\frac{π}{4})=-7$,则sinα的值等于( )
A. | $\frac{3}{5}$ | B. | $-\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $-\frac{4}{5}$ |