题目内容

(2012•株洲模拟)在直角坐标系xOy中,以坐标原点O为圆心的圆与直线:x-
3
y=4
相切.
(1)求圆O的方程;
(2)若圆O上有两点M、N关于直线x+2y=0对称,且|MN|=2
3
,求直线MN的方程;
(3)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求
PA
PB
的取值范围.
分析:(1)利用点到直线的距离公式求出半径r,从而求得圆O的方程.
(2)用点斜式设出MN的方程为y=2x+b,由条件求出圆心O到直线MN的距离等于
r2-(
MN
2
)
2
=1,由1=
|0-0+b|
5

求出b的值,即可得到MN的方程.
(3)由题意可得|PA|•|PB|=|PO|2 ,设点P(x,y),代入化简可得x2=y2+2.由点P在圆内可得 x2+y2<4,可得0≤y2<1.化简
PA
PB
=2(y2-1),从而求得
PA
PB
的取值范围.
解答:解:(1)半径r=
|0-0-4|
1+3
=2,故圆O的方程为 x2+y2=4.
(2)∵圆O上有两点M、N关于直线x+2y=0对称,故MN的斜率等于直线x+2y=0斜率的负倒数,等于2,
设MN的方程为y=2x+b,即2x-y+b=0.
由弦长公式可得,圆心O到直线MN的距离等于
r2-(
MN
2
)
2
=1.
由点到直线的距离公式可得 1=
|0-0+b|
5
,b=±
5
,故MN的方程为2x-y±
5
=0.
(3)圆O与x轴相交于A(-2,0)、B(2,0)两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,
∴|PA|•|PB|=|PO|2 ,设点P(x,y),
 则有
(x+2)2+y2
(x-2)2+y2
=x2+y2,化简可得 x2=y2+2.
由点P在圆内可得 x2+y2<4,故有 0≤y2<1.
PA
PB
=(-2-x,-y)•(2-x,-y)=x2+y2-4=2(y2-1)∈[-2,0).
PA
PB
的取值范围是[-2,0).
点评:本题主要考查等比数列的定义和性质,直线和圆的位置关系,两个向量的数量积的定义,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网