题目内容

(本小题满分12分)函数是R上的偶函数,且当时,函数解析式为,
(Ⅰ)求的值;
(Ⅱ)求当时,函数的解析式。

(1)  ;(2)

解析试题分析:(1)因为根据已知函数为偶函数,则可知f(-x)=f(x),那么求解x=-2时的函数值,就等于x=2时 的函数值。
(2)在x<0时,得到-x大于零,进而代入已知关系式中得到f(-x),在结合奇偶性得到f(x)
解:(1)∵ 函数是R上的偶函数,∴    ………3分
(2)当,              ………7分
∵函数是R上的偶函数,∴,………11分
故当时,函数的解析式。          ………12分
考点:本试题主要考查了函数奇偶性的运算求解对称区间的解析式的问题,以及特殊点的函数值。
点评:解决该试题的关键是能利用偶函数关于y轴对称,那么在将所求解的区间的变量,转化为已知区间的变量,结合偶函数的定义得到结论。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网