题目内容
若,则__________.
已知向量,,设.
(Ⅰ)若,求的值;
(Ⅱ)在中,角,,的对边分别是,,,且满足,求的取值范围.
已知数列与满足,,,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,为数列的前项和,求.
设集合,,则( )
A. B. C. D.
已知椭圆的离心率为,且过点.
()求椭圆的方程;
() 设点在椭圆上,且与轴平行,过点作两条直线分别交于椭圆于两点,若直线平分,求证:直线的斜率是定值,并求出这个定值.
已知实数满足则的最大值是_____.
已知函数为奇函数.
(1)求的值,并求函数的定义域;
(2)判断并证明函数的单调性;
(3)若对于任意,是否存在实数,使得不等式恒成立,若存在,求出实数的取值范围,若不存在,请说明理由.
函数的部分图象如图所示,则的单调递减区间为( )
A. , B. ,
C. , D. ,
若关于的不等式在上恒成立,则实数的取值范围是( )