题目内容
当时,曲线与轴所围成图形的面积是 .
2
解析
(本小题13分)已知函数
(1)若实数求函数在上的极值;
(2)记函数,设函数的图像与轴交于点,曲线在点处的切线与两坐标轴所围成图形的面积为则当时,求的最小值.
设函数,其中为自然对数的底数.
(1)求函数的单调区间;
(2)记曲线在点(其中)处的切线为,与轴、轴所围成的三角形面积为,求的最大值.
【解析】第一问利用由已知,所以,
由,得, 所以,在区间上,,函数在区间上单调递减; 在区间上,,函数在区间上单调递增;
第二问中,因为,所以曲线在点处切线为:.
切线与轴的交点为,与轴的交点为,
因为,所以,
, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时,
解:(Ⅰ)由已知,所以, 由,得, 所以,在区间上,,函数在区间上单调递减;
在区间上,,函数在区间上单调递增;
即函数的单调递减区间为,单调递增区间为.
(Ⅱ)因为,所以曲线在点处切线为:.
所以,的最大值为
已知函数.
(1)若实数,求函数在上的极值;
(2)记函数,设函数的图象C与轴交于点,曲线C在点处的切线与两坐标轴所围成的图形的面积为,求当时的最小值。