题目内容
选修4-2:矩阵及其变换(1)如图,向量
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_ST/0.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_ST/1.png)
(Ⅰ)求矩阵M;
(Ⅱ)并求
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_ST/2.png)
选修4-4:坐标系与参数方程
( 2)在直角坐标系x0y中,直线l的参数方程为
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_ST/3.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_ST/4.png)
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B.若点P的坐标为(3,
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_ST/5.png)
选修4-5:不等式选讲
(3)已知x,y,z为正实数,且
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_ST/6.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_ST/images7.png)
【答案】分析:(1)(Ⅰ)二阶矩阵把点变换成点,利用待定系数法及二阶矩阵与平面列向量的乘法,可求矩阵M,
(Ⅱ)二阶矩阵把点变换成点,借此又可解决坐标变换问题,注意变换前后点的坐标间的关系.
(2)(Ⅰ)由圆C的方程为
,能求出圆的直角方程.
(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得
,再由点P的坐标为(3,
),能求出|PA|+|PB|.
(3)由柯西不等式,得x+4y+9z=[(
)2+(2
)2+(3
)2]•[(
)2+(
)2+(
)2],由此能求出x+4y+9z取得最小值.
解答:解:(1)(Ⅰ)设M=
,
∵
,
矩阵M作用后分别变成
=(2,2),
=(2,4),
∴用待定系数求得M=
.(4分)
(Ⅱ)∵M=
,∴
,解得
,
再坐标转移法得y′=2sin(
+
).(7分)
(2)(Ⅰ)∵圆C的方程为
,
∴
,
∴圆的直角方程:![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/22.png)
(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/23.png)
由
,故可设t1,t2是上述方程的两根
所以
,又直线l过点
,故结合t的几何意义得
|PA|+|PB|=
.…7 分
(3)解:由柯西不等式得
x+4y+9z=[(
)2+(2
)2+(3
)2]•[(
)2+(
)2+(
)2]
≥![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/34.png)
=36.…(4分)
当且仅当x=2y=3z时等号成立,…(5分)
此时x=6,y=3,z=2…(6分)
所以当x=6,y=3,z=2时,x+4y+9z取得最小值36.…(7分)
点评:第(1)题考查矩阵及其变换,第(2)题考查坐标第与参数方程,第(3)题考查不等式.这三道小题都是基础题,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
(Ⅱ)二阶矩阵把点变换成点,借此又可解决坐标变换问题,注意变换前后点的坐标间的关系.
(2)(Ⅰ)由圆C的方程为
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/0.png)
(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/1.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/2.png)
(3)由柯西不等式,得x+4y+9z=[(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/3.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/4.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/5.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/6.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/7.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/8.png)
解答:解:(1)(Ⅰ)设M=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/9.png)
∵
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/10.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/11.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/12.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/13.png)
∴用待定系数求得M=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/14.png)
(Ⅱ)∵M=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/15.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/16.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/17.png)
再坐标转移法得y′=2sin(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/18.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/19.png)
(2)(Ⅰ)∵圆C的方程为
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/20.png)
∴
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/21.png)
∴圆的直角方程:
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/22.png)
(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/23.png)
由
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/24.png)
所以
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/25.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/26.png)
|PA|+|PB|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/27.png)
(3)解:由柯西不等式得
x+4y+9z=[(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/28.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/29.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/30.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/31.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/32.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/33.png)
≥
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224673200/SYS201312021124542246732020_DA/34.png)
=36.…(4分)
当且仅当x=2y=3z时等号成立,…(5分)
此时x=6,y=3,z=2…(6分)
所以当x=6,y=3,z=2时,x+4y+9z取得最小值36.…(7分)
点评:第(1)题考查矩阵及其变换,第(2)题考查坐标第与参数方程,第(3)题考查不等式.这三道小题都是基础题,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目