题目内容
(2013•威海二模)已知{an}为等差数列,Sn为其前n项和,且2Sn=an+2n2.
(Ⅰ)求an,Sn;
(Ⅱ)若ak,a2k-2,a2k+1成等比数列,求k的值及公比.
(Ⅰ)求an,Sn;
(Ⅱ)若ak,a2k-2,a2k+1成等比数列,求k的值及公比.
分析:(Ⅰ)把n=1时,和n=2分别代入已知的式子可得a1=2,a2=4,可得公差d,进而可得通项和前n项和;(Ⅱ)由题意可得a2k-22=aka2k+1,代入可得可得关于k的式子,解之可得k值,进而可得公比q.
解答:解:(Ⅰ)∵{an}为其等差数列,设公差为d,当n=1时,有a1=
a1+1,解得a1=2----------------------(1分)
当n=2时,有a1+a2=
a2+4,解得a2=4,∴公差d=a2-a1=4-2=2-----------------(3分)
∴an=2+2(n-1)=2n,---------------------(4分)
代入求和公式可得:Sn=
=n(n+1)------------------------(6分)
(Ⅱ)若ak,a2k-2,a2k+1成等比数列,则有a2k-22=aka2k+1--------------------(7分)
即4(2k-2)2=2k•2(2k+1),整理得2k2-9k+4=0,--------------------(8分)
解得k=4或k=
(舍).--------------------(10分)
∴a4,a6,a9成等比数列,所以公比q=
=
--------------------(12分)
1 |
2 |
当n=2时,有a1+a2=
1 |
2 |
∴an=2+2(n-1)=2n,---------------------(4分)
代入求和公式可得:Sn=
n(2+2n) |
2 |
(Ⅱ)若ak,a2k-2,a2k+1成等比数列,则有a2k-22=aka2k+1--------------------(7分)
即4(2k-2)2=2k•2(2k+1),整理得2k2-9k+4=0,--------------------(8分)
解得k=4或k=
1 |
2 |
∴a4,a6,a9成等比数列,所以公比q=
a6 |
a4 |
3 |
2 |
点评:本题考查等差数列的通项公式和求和公式,涉及等比数列的通项公式,属基础题.
练习册系列答案
相关题目