题目内容

已知α为锐角,且tanα=
2
-1
,函数f(x)=2xtan2α+sin(2α+
π
4
)
,数列{an}的首项a1=1,an+1=f(an).
(1)求函数f(x)的表达式;
(2)在△ABC中,若∠A=2α,∠C=
π
3
,BC=2,求△ABC的面积
(3)求数列{an}的前n项和Sn
分析:(1)利用三角函数公式二倍角公式,两角和正弦公式分别求出tan2α,sin(2α+
π
4
)的值,代入解析式即可求得函数f(x)的表达式.
(2)利用正弦定理求得AB,再用S△ABC=
1
2
×AB×BC×sinB计算可得面积大小.
(3)由an+1=2an+1,先转化构造出数列{an+1}是以2为首项,2为公比的等比数列.求出数列{an}的通项,再去求和.
解答:解:(1)tan2α=
2tanα
1-tan2α
=
2(
2
-1)
1-(
2
-1)
2
=1

sin(2α+
π
4
)=sin2α•cos
π
4
+cos2α•sin
π
4
=
2
2
(sin2α+cos2α)

=
2
2
×
2sinα•cosα+(cos2α-sin2α )
sin2α+cos2α
(分子分母同除以cos2α)
=
2
2
×
2tanα+(1-tan2α)
1+tan2α
=1
∴f(x)=2x+1
(2)由(1)得∠A=2α=
π
4
,而∠C=
π
3

根据正弦定理易AB=
BC•sin
π
3
sin
π
4
=
3
2
2
2
=
6

sinB=sin[π-(A+C)]=sin75°=
6
+
2
4

S△ABC=
1
2
×AB×BC×sinB=
1
2
×
6
×2×
6
+
2
4
=
3+
3
2

(3)∵an+1=2an+1,
∴an+1+1=2(an+1)
∵a1=1∴数列{an+1}是以2为首项,2为公比的等比数列.
可得an+1=2n,∴an=2n-1,
Sn=
2(1-2n)
1-2
-n=2n+1-n-2
点评:本题考查函数与三角、数列的综合.注意考查了三角函数公式、正弦定理、数列求和.须具有较强的分析解决问题,计算,转化的思想与能力.是难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网