题目内容

已知α为锐角,且tan(
π
4
+α)=2

(Ⅰ)求tanα的值;
(Ⅱ)求
2cos2
α
2
-1-3sinα
2
sin(α+
π
4
)
的值.
分析:(Ⅰ)根据 tan(
π
4
+α)=
1+tanα
1-tanα
=2,解方程求得tanα的值.
(Ⅱ) 由于
2cos2
α
2
-1-3sinα
2
sin(α+
π
4
)
=
cosα-3sinα
sinα+cosα
=
1-3tanα
1+tanα
,故把 tanα=
1
3
代入,即可得到结果.
解答:解:(Ⅰ)∵tan(
π
4
+α)=
1+tanα
1-tanα
=2,…(2分)
所以,1+tanα=2-2tanα,所以tanα=
1
3
.…(5分)
(Ⅱ)
2cos2
α
2
-1-3sinα
2
sin(α+
π
4
)
=
cosα-3sinα
sinα+cosα
 …(7分)
=
1-3tanα
1+tanα
.…(10分)
把 tanα=
1
3
代入,可得原式=0.
所以,
2cos2
α
2
-1-3sinα
2
sin(α+
π
4
)
=0
.…(13分)
点评:本题主要考查三角函数的恒等变换及化简求值,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网