题目内容

已知α为锐角,且tan(
π
4
+α)=2

(Ⅰ)求tanα的值;
(Ⅱ)求
sin2αcosα-sinα
cos2α
的值.
分析:(Ⅰ)通过正切的两角和公式可求tanα的值.
(Ⅱ)先把原式化简,再利用(Ⅰ)tanα的值求出sinα,得出答案.
解答:解:(Ⅰ)tan(
π
4
+α)=
1+tanα
1-tanα

1+tanα
1-tanα
=2
,1+tanα=2-2tanα,
tanα=
1
3

(Ⅱ)
sin2αcosα-sinα
cos2α
=
2sinαcos2α-sinα
cos2α
=
sinα(2cos2α-1)
cos2α
=
sinαcos2α
cos2α
=sinα

tanα=
1
3

∴cosα=3sinα,
又sin2α+cos2α=1,
sin2α=
1
10

又α为锐角,
sinα=
10
10

sin2αcosα-sinα
cos2α
=
10
10
点评:本题主要考查用诱导公式化简求和.题中还出现了两角和公式、倍角公式等,要熟练掌握这些公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网