ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=ax2+4x-2£¬Èô¶ÔÈÎÒâx1£¬x2¡ÊRÇÒx1¡Ùx2£¬¶¼ÓÐf(
)¡Ü
£®
£¨¢ñ£©ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©£¨Àí£©¶ÔÓÚ¸ø¶¨µÄ·ÇÁãʵÊýa£¬Çó×îСµÄ¸ºÊýM£¨a£©£¬Ê¹µÃx¡Ê[M£¨a£©£¬0]ʱ£¬-4¡Üf£¨x£©¡Ü4¶¼³ÉÁ¢£»
£¨¢ó£©£¨Àí£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬µ±aΪºÎֵʱ£¬M£¨a£©×îС£¬²¢Çó³öM£¨a£©µÄ×îСֵ£®
£¨¢ò£©£¨ÎÄ£©Çó×îСµÄʵÊýb£¬Ê¹µÃx¡Ê[b£¬1]ʱ£¬f£¨x£©¡Ý-2¶¼³ÉÁ¢£»
£¨¢ó£©£¨ÎÄ£©Èô´æÔÚʵÊýa£¬Ê¹µÃx¡Ê[b£¬1]ʱ£¬-2¡Üf£¨x£©¡Ü3b¶¼³ÉÁ¢£¬ÇóʵÊýbµÄÈ¡Öµ·¶Î§£®
x1+x2 |
2 |
f(x1)+f(x2) |
2 |
£¨¢ñ£©ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©£¨Àí£©¶ÔÓÚ¸ø¶¨µÄ·ÇÁãʵÊýa£¬Çó×îСµÄ¸ºÊýM£¨a£©£¬Ê¹µÃx¡Ê[M£¨a£©£¬0]ʱ£¬-4¡Üf£¨x£©¡Ü4¶¼³ÉÁ¢£»
£¨¢ó£©£¨Àí£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬µ±aΪºÎֵʱ£¬M£¨a£©×îС£¬²¢Çó³öM£¨a£©µÄ×îСֵ£®
£¨¢ò£©£¨ÎÄ£©Çó×îСµÄʵÊýb£¬Ê¹µÃx¡Ê[b£¬1]ʱ£¬f£¨x£©¡Ý-2¶¼³ÉÁ¢£»
£¨¢ó£©£¨ÎÄ£©Èô´æÔÚʵÊýa£¬Ê¹µÃx¡Ê[b£¬1]ʱ£¬-2¡Üf£¨x£©¡Ü3b¶¼³ÉÁ¢£¬ÇóʵÊýbµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨I£©ÓÉÒÑÖªÖк¯Êýf£¨x£©=ax2+4x-2£¬ÎÒÃÇÇó³öf(
)-
µÄ½âÎöʽ£¬²¢¸ù¾Ýf(
)¡Ü
ÅжÏÆä·ûºÅ£¬¼´¿ÉµÃµ½ÊµÊýaµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©£¨Àí£©ÓÉÒÑÖªÖк¯Êýf£¨x£©=ax2+4x-2µÄ½âÎöʽ£¬½áºÏ£¨I£©µÄ½áÂÛ£¬ÎÒÃǿɵöԳÆÖáx=-
£¼0£¬ÎÒÃÇ·Ö-2-
£¼-4ºÍ-2-
¡Ý-4£¬Á½ÖÖÇé¿ö½øÐзÖÀàÌÖÂÛ£¬×îºó×ÛºÏÌÖÂÛ½á¹û£¬¼´¿ÉµÃµ½´ð°¸£®
£¨III£©£¨Àí£©ÓÉ£¨2£©Öª£¬µ±0£¼a£¼2£¬M(a)=
£® µ±a¡Ý2£¬M(a)=
¡Ý-3£® ÎÒÃǸù¾Ý·Ö¶Îº¯Êý·Ö¶Î´¦ÀíµÄÔÔò£¬·Ö±ðÇó³ö¸÷¶ÎÉϺ¯ÊýµÄ×îСֵ£¬¼´¿ÉµÃµ½£¬M£¨a£©µÄ×îСֵ-3£®
£¨II£©£¨ÎÄ£©ÓÉÒÑÖªÖе±x¡Ê[b£¬1]ʱ£¬f£¨x£©¡Ý-2¶¼³ÉÁ¢£¬½áºÏf£¨0£©=-2£¬Ò×µÃb¡Ý0£¬½ø¶øµÃµ½bµÄ×îСֵ£»
£¨¢ó£©£¨ÎÄ£©ÓÉ£¨¢ò£©ÖеĽáÂÛ¿ÉÖªb¡Ý0£¬½ø¶ø¿ÉÒÔÅжϳöº¯Êýf£¨x£©ÔÚÇø¼ä[b£¬1]ÉÏΪÔöº¯Êý£¬½ø¶ø¸ù¾Ýx¡Ê[b£¬1]ʱ£¬-2¡Üf£¨x£©¡Ü3b¶¼³ÉÁ¢£¬¹¹Ôì¹ØÓÚbµÄ²»µÈʽ£¬½â²»µÈʽ£¬¼´¿ÉµÃµ½ÊµÊýbµÄÈ¡Öµ·¶Î§£®
x1+x2 |
2 |
f(x1)+f(x2) |
2 |
x1+x2 |
2 |
f(x1)+f(x2) |
2 |
£¨¢ò£©£¨Àí£©ÓÉÒÑÖªÖк¯Êýf£¨x£©=ax2+4x-2µÄ½âÎöʽ£¬½áºÏ£¨I£©µÄ½áÂÛ£¬ÎÒÃǿɵöԳÆÖáx=-
2 |
a |
4 |
a |
4 |
a |
£¨III£©£¨Àí£©ÓÉ£¨2£©Öª£¬µ±0£¼a£¼2£¬M(a)=
-2 | ||
|
-6 | ||
|
£¨II£©£¨ÎÄ£©ÓÉÒÑÖªÖе±x¡Ê[b£¬1]ʱ£¬f£¨x£©¡Ý-2¶¼³ÉÁ¢£¬½áºÏf£¨0£©=-2£¬Ò×µÃb¡Ý0£¬½ø¶øµÃµ½bµÄ×îСֵ£»
£¨¢ó£©£¨ÎÄ£©ÓÉ£¨¢ò£©ÖеĽáÂÛ¿ÉÖªb¡Ý0£¬½ø¶ø¿ÉÒÔÅжϳöº¯Êýf£¨x£©ÔÚÇø¼ä[b£¬1]ÉÏΪÔöº¯Êý£¬½ø¶ø¸ù¾Ýx¡Ê[b£¬1]ʱ£¬-2¡Üf£¨x£©¡Ü3b¶¼³ÉÁ¢£¬¹¹Ôì¹ØÓÚbµÄ²»µÈʽ£¬½â²»µÈʽ£¬¼´¿ÉµÃµ½ÊµÊýbµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨¢ñ£©¡ßf(
)-
=a(
)2+b(
)+c-
=-
(x1-x2)2¡Ü0£¬
¡ßx1¡Ùx2£¬
¡àa¡Ý0£®
¡àʵÊýaµÄÈ¡Öµ·¶Î§Îª[0£¬+¡Þ£©£®
£¨¢ò£©£¨Àí£©¡ßf(x)=ax2+4x-2=a(x+
)2-2-
£¬
ÏÔÈ»f£¨0£©=-2£¬¶Ô³ÆÖáx=-
£¼0£®
£¨1£©µ±-2-
£¼-4£¬¼´0£¼a£¼2ʱ£¬M(a)¡Ê(-
£¬0)£¬ÇÒf[M£¨a£©]=-4£®
Áîax2+4x-2=-4£¬½âµÃx=
£¬
´ËʱM£¨a£©È¡½Ï´óµÄ¸ù£¬¼´M(a)=
=
£¬
£¨2£©µ±-2-
¡Ý-4£¬¼´a¡Ý2ʱ£¬M(a)£¼-
£¬ÇÒf[M£¨a£©]=4£®
Áîax2+4x-2=4£¬½âµÃx=
£¬
´ËʱM£¨a£©È¡½ÏСµÄ¸ù£¬¼´M(a)=
=
£¬
£¨¢ó£©£¨Àí£© ÓÉ£¨2£©Öª£¬
µ±0£¼a£¼2£¬M(a)=
£® ´Ëʱ M£¨a£©£¾-1
µ±a¡Ý2£¬M(a)=
¡Ý-3£® ´Ëʱ M£¨a£©¡Ý-3£¨µ±ÇÒ½öµ±a=2ʱ£¬È¡µÈºÅ£©
¡ß-3£¼-1£¬
¡àµ±a=2ʱ£¬M£¨a£©È¡µÃ×îСֵ-3£®
£¨¢ò£©£¨ÎÄ£©¡ßf£¨0£©=-2
ÓÉx¡Ê[b£¬1]ʱ£¬f£¨x£©¡Ý-2¶¼³ÉÁ¢
¡àb¡Ý0
¡àbµÄ×îСֵΪ0
£¨¢ó£©£¨ÎÄ£©ÓÉ£¨¢ò£©Öª b¡Ý0
¡àf£¨x£©ÔÚ[b£¬1]ÉÏΪÔöº¯Êý£¬
¡àf£¨1£©¡Ü3b
¼´£ºa+4-2¡Ü3b
ÓÖ ÓÉ£¨¢ñ£©a¡Ý0⇒3b¡Ýa+2¡Ý2⇒b¡Ý
¡à
¡Üb£¼1
x1+x2 |
2 |
f(x1)+f(x2) |
2 |
=a(
x1+x2 |
2 |
x1+x2 |
2 |
ax12+bx1+c+ax22+bx2+c |
2 |
=-
a |
4 |
¡ßx1¡Ùx2£¬
¡àa¡Ý0£®
¡àʵÊýaµÄÈ¡Öµ·¶Î§Îª[0£¬+¡Þ£©£®
£¨¢ò£©£¨Àí£©¡ßf(x)=ax2+4x-2=a(x+
2 |
a |
4 |
a |
ÏÔÈ»f£¨0£©=-2£¬¶Ô³ÆÖáx=-
2 |
a |
£¨1£©µ±-2-
4 |
a |
2 |
a |
Áîax2+4x-2=-4£¬½âµÃx=
-2¡À
| ||
a |
´ËʱM£¨a£©È¡½Ï´óµÄ¸ù£¬¼´M(a)=
-2+
| ||
a |
-2 | ||
|
£¨2£©µ±-2-
4 |
a |
2 |
a |
Áîax2+4x-2=4£¬½âµÃx=
-2¡À
| ||
a |
´ËʱM£¨a£©È¡½ÏСµÄ¸ù£¬¼´M(a)=
-2-
| ||
a |
-6 | ||
|
£¨¢ó£©£¨Àí£© ÓÉ£¨2£©Öª£¬
µ±0£¼a£¼2£¬M(a)=
-2 | ||
|
µ±a¡Ý2£¬M(a)=
-6 | ||
|
¡ß-3£¼-1£¬
¡àµ±a=2ʱ£¬M£¨a£©È¡µÃ×îСֵ-3£®
£¨¢ò£©£¨ÎÄ£©¡ßf£¨0£©=-2
ÓÉx¡Ê[b£¬1]ʱ£¬f£¨x£©¡Ý-2¶¼³ÉÁ¢
¡àb¡Ý0
¡àbµÄ×îСֵΪ0
£¨¢ó£©£¨ÎÄ£©ÓÉ£¨¢ò£©Öª b¡Ý0
¡àf£¨x£©ÔÚ[b£¬1]ÉÏΪÔöº¯Êý£¬
¡àf£¨1£©¡Ü3b
¼´£ºa+4-2¡Ü3b
ÓÖ ÓÉ£¨¢ñ£©a¡Ý0⇒3b¡Ýa+2¡Ý2⇒b¡Ý
2 |
3 |
¡à
2 |
3 |
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊǶþ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬Ò»Ôª¶þ´Î·½³ÌµÄ¸ùµÄ·Ö²¼ÓëϵÊýµÄ¹Øϵ£¬·Ö¶Îº¯ÊýµÄ×îСֵ£¬º¯Êýºã³ÉÁ¢ÎÊÌ⣬ÆäÖУ¨I£©µÄ¹Ø¼üÊǸù¾ÝʵÊýµÄÐÔÖÊ£¬ÅжϳöʵÊýaµÄÈ¡Öµ·¶Î§£¬Àí¿Æ£¨II£©µÄ¹Ø¼üÊǸù¾Ýº¯Êýf£¨x£©=ax2+4x-2µÄ¶Ô³ÆÖáx=-
£¼0£¬È·¶¨·ÖÀà±ê×¼£¬£¨III£©µÄ¹Ø¼üÊǸù¾Ý·Ö¶Îº¯Êý·Ö¶Î´¦ÀíµÄÔÔò£¬µÃµ½·Ö¶Îº¯ÊýµÄ×îÖµ£¬¶øÎÄ¿Æ£¨II£©£¨III£©µÄ¹Ø¼üÊǸù¾ÝÒÑÖªÌõ¼þ¹¹Ôì¹ØÓÚbµÄ²»µÈʽ£®
2 |
a |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿