题目内容
若点在椭圆上,、分别是椭圆的两焦点,且,则的面积是 ( )
A. 2 B. 1 C. D.
B
【解析】略
(本小题满分16分) 如图,在平面直角坐标系中,已知点为椭圆
的右顶点, 点,点在椭圆上, .
(1)求直线的方程; (2)求直线被过三点的圆截得的弦长;
(3)是否存在分别以为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不
存在,请说明理由
(本小题满分14分)已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(Ⅰ)求抛物线和椭圆的标准方程;
(Ⅱ)过点的直线交抛物线于、两不同点,交轴于点,已知为定值.
(Ⅲ)直线交椭圆于两不同点,在轴的射影分别为,,若点满足:,证明:点在椭圆上.
.(本小题满分12分)
已知椭圆:,分别为左,右焦点,离心率为,点在椭圆上,, ,过与坐标轴不垂直的直线交椭圆于两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)在线段上是否存在点,使得以线段为邻边的四边形是菱形?若存在,求出实数的取值范围;若不存在,说明理由.
已知双曲线的左、右焦点分别为、,点在双曲线的右支上,直线为过且切于双曲线的直线,且平分,过作与直线平行的直线交于点,则,利用类比推理:若椭圆的左、右焦点分别为、,点在椭圆上,直线为过且切于椭圆的直线,且平分的外角,过作与直线平行的直线交于点,则的值为 ( )
(A) (B) (C) (D)无法确定[来
若点在椭圆上,两个焦点分别为F1、F2且满足,则实数t的取值范围为________.