题目内容

18.(文科做)在等差数列{an}中,已知a1=13,a2=10
(1)求{an}的通项公式;  
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

分析 (1)利用已知及等差数列的性质可求d=-3,根据等差{an}的通项公式即可得解.
(2)由裂项法可得${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(16-3n)(13-3n)}=\frac{1}{3}(\frac{1}{13-3n}-\frac{1}{16-3n})$,可求Tn=$\frac{1}{3}[(\frac{1}{10}-\frac{1}{13})+(\frac{1}{7}-\frac{1}{10})+(\frac{1}{4}-\frac{1}{7})+…+(\frac{1}{13-3n}-\frac{1}{16-3n})]$,即可求解.

解答 解:(1)∵a1=13,a2=10,a2为整数,∴d=-3,
∴{an}的通项公式为an=16-3n. …7分
(2)∵${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(16-3n)(13-3n)}=\frac{1}{3}(\frac{1}{13-3n}-\frac{1}{16-3n})$,…9分
∴Tn=b1+b2+…+bn
=$\frac{1}{3}[(\frac{1}{10}-\frac{1}{13})+(\frac{1}{7}-\frac{1}{10})+(\frac{1}{4}-\frac{1}{7})+…+(\frac{1}{13-3n}-\frac{1}{16-3n})]$,
=$\frac{1}{3}(\frac{1}{13-3n}-\frac{1}{13})=\frac{n}{13(13-3n)}$,…12分

点评 本题主要考查了等差数列的性质,用裂项法求数列的和,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网