题目内容
【题目】先后抛掷两枚均匀的正方体骰子,观察向上的点数,问:
(1)共有多少种不同的结果?
(2)所得点数之和是11的概率是多少?
(3)所得点数之和是4的倍数的概率是多少?
【答案】(1)36(2)(3)
【解析】
试题分析:
(1)一共有6×6=36(种)不同的结果,(2)所得点数之和为11记为事件A,有(5,6),(6,5)两种,根据公式计算即可,(3)所得点数之和是4的倍数为事件B,则事件B的结果有9种,根据公式计算即可
试题解析:(1)一共有6×6=36(种)不同的结果.
(2)两个数字相加为11的情况是5+6=11,6+5=11,所得点数之和为11记为事件A,事件A包含两种情况,所以
(3)所得点数之和是4的倍数的情况是1+3=3+1=2+2,或2+6=6+2=3+5=5+3=4+4,或6+6=12,共9种情况,所得点数之和是4的倍数为事件B,则事件B的结果,包含共12种情况,
故所求的概率为P(B)==.
【题目】“开门大吉”是某电视台推出的游戏节目。选手面对号8扇大门,依次按响门上的门铃,
门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确答出这首歌的名字,
方可获得该扇门对应的家庭梦想基金。在一次场外调查中,发现参赛选手大多在以下两个年龄段:
,(单位:岁),统计这两个年龄段选手答对歌曲名称与否的人数如下图所示。
(Ⅰ)写出列联表,并判断是否有的把握认为答对歌曲名称与否和年龄有关,说明你的理由。(下
面的临界值表供参考)
0.1 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
(Ⅱ)在统计过的参赛选手中按年龄段分层选取9名选手,并抽取3名幸运选手,求3名幸运选手中在
岁年龄段的人数的分布列和数学期望。
(参考公式:,其中)
【题目】为了解某天甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素的含量(单位:毫克).当产品中的微量元素满足,且时,该产品为优等品.已知甲厂该天生产的产品共有98件,下表是乙厂的5件产品的测量数据:
编号 | 1 | 2 | 3 | 4 | 5 |
169 | 178 | 166 | 175 | 180 | |
75 | 80 | 77 | 70 | 81 |
(1)求乙厂该天生产的产品数量;
(2)用上述样本数据估计乙厂该天生产的优等品的数量;
(3)从乙厂抽出取上述5件产品中,随机抽取2件,求抽取的2件产品中优等品至少有1件的概率。
【题目】户外运动已经成为一种时尚运动,某公司为了了解员工喜欢户外运动是否与性别有关,决定从本公司全体650人中随机抽取50人进行问卷调查。
(1)通过对挑选的50人进行调查,得到了如下列联表:
喜欢户外运动 | 不喜欢户外运动 | 合计 | |
男员工 | 5 | ||
女员工 | 10 | ||
合计 | 50 |
已知在这50人中随机挑选1人,此人喜欢户外运动的概率是0.6,请将列联表补充完整,并估计该公司男、女员工各多少人;
(2)估计有多大的把握认为喜欢户外运动与性别有关,并说明你的理由;
(3)若用随机数表法从650人中抽取员工,现规定从随机数表(见附表)第2行第7列的数开始往右读,在最先挑出的5人中,任取2人,求取到男员工人数的数学期望。
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
随机数表:
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54