题目内容
【题目】【2014高考课标2理数18】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,
E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.
【答案】
【解析】(Ⅰ)证明:设O为AC与BD交点,连结OE,则由矩形ABCD知:O为BD的中点,因为E是BD的中点,所以OE∥PB,因为OE面AEC,PB面AEC,所以PB∥平面AEC。
(Ⅱ)以A为原点,直线AB、AD、AP分别为x、y、z轴建立空间直角坐标系,设AB=m,则
是平面AED的一个法向量,设是平面AEC的法向量,则
,解得,,所以令,得,所以
=,因为二面角的大小与其两个半平面的两个法向量的夹角相等哉互补,所以=,解得,因为E是PD的中点,所以三棱锥E-ACD的高为,所以三棱锥E-ACD的体积为==.
练习册系列答案
相关题目