题目内容
若不等式1-loga<0有解,则实数a的范围是 .
(0,1)∪(1,10)
当a>1时,不等式化为10-ax>a,要使不等式有解,必须10-a>0
∴1<a<10
当0<a<1时,不等式化为0<10-ax<a10-a<ax<10不等式恒有解
故满足条件a的范围是(0,1)∪(1,10)
∴1<a<10
当0<a<1时,不等式化为0<10-ax<a10-a<ax<10不等式恒有解
故满足条件a的范围是(0,1)∪(1,10)
练习册系列答案
相关题目