题目内容
抛物线的焦点坐标为( )
A. | B. | C. | D. |
D
解析试题分析:∵抛物线方程为,∴=1,∴,又∵焦点在轴的正半轴,∴焦点坐标为,选D.
考点:抛物线的标准方程.
练习册系列答案
相关题目
半径不等的两定圆、无公共点(、是两个不同的点),动圆与圆、都内切,则圆心轨迹是( )
A.双曲线的一支 | B.椭圆或圆 |
C.双曲线的一支或椭圆或圆 | D.双曲线一支或椭圆 |
双曲线的左焦点为F,点P为左支下半支上任意一点(异于顶点),则直线PF的斜率的变化范围是 ( )
A.(-∞,0) | B.(1,+∞) |
C.(-∞,0)∪(1,+∞) | D.(-∞,-1)∪(1,+∞) |
双曲线的顶点和焦点到其渐近线距离的比是( )
A. | B. | C. | D. |
为坐标原点,为抛物线的焦点,为上一点,若,则的面积为( )
A. | B. | C. | D. |
已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为 ( )
A.y=±x | B.y=±x | C.y=±x | D.y=±x |