题目内容

在数列{an}中,a1=3,a2=3,且数列{an+1+an}是公比为2的等比数列,数列{an+1-an}是公比为-1的等比数列.
(1)求数列{an}的通项公式;
(2)求证:当k为正奇数时,
1
ak
+
1
ak+1
3
2k+1

(3)求证:当n∈N+时,
1
a1
+
1
a2
+
1
a3
+…+
1
a2n-1
+
1
a2n
<1
(1)在数列{an}中,a1=3,a2=3,
∵数列{an+1+an}是公比为2的等比数列,
∴an+1+an=(a2+a1)•2n-1=3•2n,①
∵数列{an+1-2an}是公比为-1的等比数列,
∴an+1-2an=(a2-2a1)(-1)n-1=3(-1)n,②
①-②得3an=3•2n+3•(-1)n-1
∴an=2n+(-1)n-1…(5分)
(2)证明:当k为正奇数时,
1
ak
+
1
ak+1
=
1
2k+1
+
1
2k+1-1

=
3•2k
22k+1+2k-1
3
2k+1

∴当k为正奇数时,
1
ak
+
1
ak+1
3
2k+1
…(8分)
(3)证明:当n∈N*时,
1
ak
+
1
ak+1
3
2k+1

1
a1
+
1
a2
+
1
a3
+…+
1
a2n-1

=(
1
a1
+
1
a2
)+(
1
a3
+
1
a4
)+…+(
1
a2n-1
+
1
a2n
)

3
2 2
+
3
2 4
+…+
3
2 2n

=3×
1
4
(1-
1
4n
1-
1
4

=1-
1
4n
<1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网