ÌâÄ¿ÄÚÈÝ
21.ij¹ú²ÉÓÃÑøÀÏ´¢±¸½ðÖƶÈ.¹«ÃñÔÚ¾ÍÒµµÄµÚÒ»Äê¾Í½»ÄÉÑøÀÏ´¢±¸½ð£¬ÊýĿΪa1£¬ÒÔºóÿÄê½»ÄɵÄÊýÄ¿¾ù±ÈÉÏÒ»ÄêÔö¼Ód£¨d£¾0£©£¬Òò´Ë£¬ÀúÄêËù½»ÄɵĴ¢Îñ½ðÊýÄ¿a1£¬a2£¬¡ÊÇÒ»¸ö¹«²îΪdµÄµÈ²îÊýÁУ¬Óë´Ëͬʱ£¬¹ú¼Ò¸øÓèÓŻݵļÆÏ¢Õþ²ß£¬²»½ö²ÉÓù̶¨ÀûÂÊ£¬¶øÇÒ¼ÆË㸴Àû.Õâ¾ÍÊÇ˵£¬Èç¹û¹Ì¶¨ÄêÀûÂÊΪr£¨r£¾0£©£¬ÄÇô£¬ÔÚµÚnÄêÄ©£¬µÚÒ»ÄêËù½»ÄɵĴ¢±¸½ð¾Í±äΪa1£¨1£«r£©a£1£¬µÚ¶þÄêËù½»ÄɵĴ¢±¸½ð¾Í±äΪ
a2£¨1£«r£©a£2£¬¡¡£¬ÒÔTn±íʾµ½µÚnÄêÄ©ËùÀۼƵĴ¢±¸½ð×ܶî.
£¨¢ñ£©Ð´³öTnÓëTn£1£¨n¡Ý2£©µÄµÝÍƹØϵʽ£»
£¨¢ò£©ÇóÖ¤£ºTn£½An£«Bn£¬ÆäÖУûAn£ýÊÇÒ»¸öµÈ±ÈÊýÁУ¬£ûBn£ýÊÇÒ»¸öµÈ²îÊýÁÐ.
±¾Ð¡ÌâÖ÷Òª¿¼²é²îÊýÁС¢µÈ±ÈÊýÁеĻù±¾¸ÅÄîºÍ»ù±¾·½·¨£¬¿¼²éѧÉúÔĶÁ×ÊÁÏ¡¢ÌáÈ¡ÐÅÏ¢¡¢½¨Á¢ÊýѧģÐ͵ÄÄÜÁ¦£¬¿¼²éÓ¦ÓÃËùѧ֪ʶ·ÖÎöºÍ½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦¡£
½â£º£¨¢ñ£©Tn=Tn-1(1+r)+an(n¡Ý2).
£¨¢ò£©T1=a1,¶Ôn¡Ý2·´¸´Ê¹ÓÃÉÏÊö¹Øϵʽ£¬µÃ
Tn=Tn-1(1+r)+an=Tn-2(1+r)2+an-1(1+r)+an=¡
=a1(1+r)n-1+a2(1+r)n-2+¡+an-1(1+r)+an. ¢Ù
ÔÚ¢ÙʽÁ½¶Ëͬ³Ë1+r£¬µÃ
(1+r)Tn=a1(1+r)n+a2(1+r)n-1+¡+an-1(1+r)2+an(1+r). ¢Ú
¢Ú-¢Ù,µÃ
rTn=a1(1+r)n+d[(1+r)n-1+(1+r)n-2+¡+(1+r)]-an
,
¼´¡£
Èç¹û¼Ç£¬£¬
ÔòTn=An+Bn,
ÆäÖУûAn£ýÊÇÒÔΪÊ×ÏÒÔ1+r(r£¾0)Ϊ¹«±ÈµÄµÈ±ÈÊýÁÐ;£ûBn£ýÊÇÒÔΪÊ×ÏΪ¹«²îµÄµÈ²îÊýÁС£