题目内容
8.下列结论中,正确的是( )A. | 0•$\overrightarrow{a}$=0 | B. | λμ<0,$\overrightarrow{a}≠0$时,λ$\overrightarrow{a}$与μ$\overrightarrow{a}$方向一定相反 | ||
C. | 若$\overrightarrow{b}$=λ$\overrightarrow{a}$($\overrightarrow{a}≠0$),则$\frac{\overrightarrow{b}}{\overrightarrow{a}}$=λ | D. | 若|$\overrightarrow{b}$|=|λ$\overrightarrow{a}$|($\overrightarrow{a}≠0$),则$\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|}$=λ |
分析 由向量的数乘运算及几何意义,逐个选项判断即可.
解答 解:选项A错误,0•$\overrightarrow{a}$应该等于$\overrightarrow{0}$;
选项B正确,当λμ<0且$\overrightarrow{a}$≠$\overrightarrow{0}$时,$λ\overrightarrow{a}$与$μ\overrightarrow{a}$方向一定相反;
选项C错误,向量没有除法;
选项D错误,$\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|}$应等于|λ|.
故选:B.
点评 本题考查向量的数乘运算及几何意义,属基础题.
练习册系列答案
相关题目
16.某研究性学习小组对某花卉种子的发芽率与昼夜温差之间的关系进行研究.他们分别记录了3月1日至3月5日的昼夜温差及每天30颗种子的发芽数,并得到如下资料:
参考数据$\sum_{i=1}^5{{x_i}{y_i}=832,}\sum_{i=1}^5{x_i^2=615,}$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}};a=\overline y-b\overline x$
(1)请根据3月1日至3月5日的数据,求出y关于x的线性回归方程.据气象预报3月6日的昼夜温差为11℃,请预测3月6日浸泡的30颗种子的发芽数.(结果保留整数)
(2)从3月1日至3月5日中任选两天,记种子发芽数超过15颗的天数为X,求X的概率分布列,并求其数学期望和方差.
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
温差x (度) | 10 | 11 | 13 | 12 | 9 |
发芽数y(颗) | 15 | 16 | 17 | 14 | 13 |
(1)请根据3月1日至3月5日的数据,求出y关于x的线性回归方程.据气象预报3月6日的昼夜温差为11℃,请预测3月6日浸泡的30颗种子的发芽数.(结果保留整数)
(2)从3月1日至3月5日中任选两天,记种子发芽数超过15颗的天数为X,求X的概率分布列,并求其数学期望和方差.
13.如图,△ABC内接于直径为BC的圆O,过点A作圆O的切线交CB的延长线于点P,∠BAC的平分线分别交BC和圆O于点D、E,若PA=2PB=10.
(1)求证:AC=2AB;
(2)求AD•DE的值.
(1)求证:AC=2AB;
(2)求AD•DE的值.
20.某公司对员工进行身体素质综合测试,测试成绩分为优秀、良好、合格三个等级,测试结果如表:(单位:人)
按优秀、良好、合格三个等级分层,从中抽取50人,其中成绩为优的有30人.
(1)求a的值;
(2)若用分层抽样的方法,在合格的同学中按男女抽取一个容量为5的样本,从中任选2人,记X为抽取女生的人数,求X的分布列及数学期望.
优秀 | 良好 | 合格 | |
男 | 180 | 70 | 20 |
女 | 120 | a | 30 |
(1)求a的值;
(2)若用分层抽样的方法,在合格的同学中按男女抽取一个容量为5的样本,从中任选2人,记X为抽取女生的人数,求X的分布列及数学期望.
17.已知集合A={-3,-1,1,2},B={-2,0,1,2},则A∩B=( )
A. | {1} | B. | {1,2} | C. | {-3,1,2} | D. | {-3,0,1} |