题目内容

【题目】在直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.

1)求曲线的直角坐标方程;

2)设曲线与直线交于点,点的坐标为(31),求.

【答案】12

【解析】

利用极坐标与直角坐标的互化公式:即可求解;

联立直线的方程和曲线的方程,整理化简得到关于的一元二次方程,由题知点在直线,利用参数方程中参数的几何意义及一元二次方程中的韦达定理即可求出的值.

因为曲线的方程

化简得,曲线的直角坐标方程为:.

2)把直线代入曲线

整理得,.

,所以方程有两个不等实根,

为方程的两个实数根,由韦达定理可得,

,∴为异号,

又∵点31)在直线上,由参数方程中参数的几何意义可得,

.

所以.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网