题目内容
[选修4-1:几何证明选讲]
如图,已知凸四边形的顶点在一个圆周上,另一个圆的圆心在上,且与四边形的其余三边相切.点在边上,且.
求证:,,,四点共圆.
“城市呼唤绿化”,发展园林绿化事业是促进国家经济法阵和城市建设事业的重要组成部分,某城市响应城市绿化的号召,计划建一如图所示的三角形形状的主题公园,其中一边利用现成的围墙,长度为米,另外两边,使用某种新型材料围成,已知,,(,单位均为米).
⑴求,y满足的关系式(指出,的取值范围);
⑵在保证围成的是三角形公园的情况下,如何设计能使所用的新型材料总长度最短?最短长度是多少?
(选修4-5:不等式选讲)
若实数满足,求的最小值.
设双曲线的一条渐近线的倾斜角为,则该双曲线的离心率为 .
已知函数,设为的导数,.
(1)求,,;
(2)求的表达式,并证明你的结论.
如图,在四面体中,,,点,分别为棱,上的点,点为棱的中点,且平面平面.求证:
(1);
(2)平面平面.
已知等差数列的首项为.若为等比数列,则__________.
设为所在平面内一点,,若,则 .
如图1,在正方形中,点分别是的中点,与交于点,点分别在线段上,且.将分别沿折起,使点重合于点,如图2所示.
(1)求证:平面;
(2)若正方形的边长为4,求三棱锥的内切球的半径.