题目内容

甲、乙两位小学生各有2008年奥运吉祥物“福娃”5个(其中“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮各一个”),现以投掷一个骰子的方式进行游戏,规则如下:当出现向上的点数是奇数时,甲赢得乙一个福娃;否则乙赢得甲一个福娃,规定掷骰子的次数达9次时,或在此前某人已赢得所有福娃时游戏终止.记游戏终止时投掷骰子的次数为ξ
(1)求掷骰子的次数为7的概率;
(2)求ξ的分布列及数学期望Eξ.
分析:对于(1)求掷骰子的次数为7的概率.首先可以分析得到甲赢或乙赢的概率均为
1
2
,若第7次甲赢意味着“第七次甲赢,前6次赢5次,但根据规则,前5次中必输1次”.若乙赢同样.故可根据二项分布列出式子求解即可.
对于(2)求ξ的分布列及数学期望Eξ.故可以设奇数出现的次数为m,偶数出现的次数为n.然后根据题意列出关系式,求出可能的m n的值又ξ=m+n,求出ξ的可能取值,然后分别求出概率即可得到ξ的分布列,再根据期望公式求得Eξ即可.
解答:解:(1)当ξ=7时,若甲赢意味着“第七次甲赢,前6次赢5次,
但根据规则,前5次中必输1次”,由规则,每次甲赢或乙赢的概率均为
1
2

因此P(ξ=7)=2
C
1
5
(
1
2
)•(
1
2
)4
1
2
1
2
=
5
64

(2)设游戏终止时骰子向上的点数是奇数出现的次数为m,
向上的点数是偶数出现的次数为n,
则由
|m-n|=5
m+n=ξ
1≤ξ≤9
,可得:
当m=5,n=0或m=0,n=5时,ξ=5;
当m=6n=1或m=1,n=6时,ξ=7
当m=7,n=2或m=2,n=7时,ξ=9.
因此ξ的可能取值是5、7、9
每次投掷甲赢得乙一个福娃与乙赢得甲一个福娃的可能性相同,其概率都是
3
6
=
1
2
.
P(ξ=5)=2×(
1
2
)5=
1
16
,P(ξ=7)=
5
64
,P(ξ=9)=1-
1
16
-
5
64
=
55
64

所以ξ的分布列是:精英家教网
Eξ=5×
1
16
+7×
5
64
+9×
55
64
=
275
32
点评:此题主要考查离散型随机变量的分布列和期望的求法,其中涉及到实际应用问题,对学生灵活应用能力要求较高.这类题型在高考中的比重日益增加,同学们要多加注意.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网