题目内容

【题目】 已知实数满足方程,当)时,由此方程可以确定一个偶函数,则抛物线的焦点到点的轨迹上点的距离最大值为_________.

【答案】

【解析】由题设条件当0yb(bR)时,由此方程可以确定一个偶函数y=f(x),可知方程(x-a+1)2+(y-1)2=1,关于y轴成轴对称,故有-a+1=0,又由圆的几何特征及确定一个偶函数y=f(x)知,y的取值范围是[0,1],由此可以求出b的取值范围,由此点(a,b)的轨迹求知,再由抛物线的性质求得其焦点坐标为(0,-),最大距离可求

解答:解:由题意可得圆的方程一定关于y轴对称,故由-a+1=0,求得a=1
由圆的几何性质知,只有当y1时,才能保证此圆的方程确定的函数是一个偶函数,故0<b1
由此知点(a,b)的轨迹是一个线段,其横坐标是1,纵坐标属于(0,1]
又抛物线y=-x2故其焦点坐标为(0,-
由此可以判断出焦点F到点(a,b)的轨迹上点的距离最大距离是
故答案为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网