题目内容
【题目】已知函数f(x)=3x+λ3﹣x(λ∈R).
(1)若f(x)为奇函数,求λ的值和此时不等式f(x)>1的解集;
(2)若不等式f(x)≤6对x∈[0,2]恒成立,求实数λ的取值范围.
【答案】
(1)解:∵f(x)=3x+λ3﹣x为奇函数,
∴f(﹣x)+f(x)=3﹣x+λ3x+3x+λ3﹣x=(3x+3﹣x)+λ(3x+3﹣x)=(λ+1)(3x+3﹣x)=0,
∵3x+3﹣x>0,∴λ+1=0,即λ=﹣1.
此时f(x)=3x﹣3﹣x,
由f(x)>1,得3x﹣3﹣x>1,即(3x)2﹣3x﹣1>0,
解得: (舍),或3x> ,即x> .
∴不等式f(x)>1的解集为( )
(2)解:由f(x)≤6得3x+λ3﹣x≤6,即3x+ ≤6,
令t=3x∈[1,9],
原不等式等价于t+ ≤6在t∈[1,9]上恒成立,
亦即λ≤6t﹣t2在t∈[1,9]上恒成立,
令g(t)=6t﹣t2,t∈[1,9],
当t=9时,g(t)有最小值g(9)=﹣27,
∴λ≤﹣27
【解析】(1)直接由f(﹣x)+f(x)=0求得λ值.把求得的λ值代入f(x),由f(x)>1求得3x的范围,进一步求解指数不等式得答案;(2)由题意可得3x+ ≤6,令t=3x∈[1,9],原不等式等价于λ≤6t﹣t2在t∈[1,9]上恒成立,令g(t)=6t﹣t2 , t∈[1,9],求得最小值,即可得到所求范围.
【考点精析】通过灵活运用函数奇偶性的性质,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇即可以解答此题.
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,且保费与上一年度车辆发生道路交通事故的情况相联系.发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和费率浮动比率表 | ||
浮动因素 | 浮动比率 | |
A1 | 上一个年度未发生有责任道路交通事故 | 下浮10% |
A2 | 上两个年度未发生有责任道路交通事故 | 下浮20% |
A3 | 上三个及以上年度未发生有责任道路交通事故 | 下浮30% |
A4 | 上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% |
A5 | 上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% |
A6 | 上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | A1 | A2 | A3 | A4 | A5 | A6 |
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5 000元,一辆非事故车盈利10 000元.且各种投保类型的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有6辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆车,求这2辆车恰好有一辆为事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.
【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值.
y(微克)
x(千克)
| ||||||
3 | 38 | 11 | 10 | 374 | -121 | -751 |
其中
(I)根据散点图判断,与,哪一个适宜作为蔬菜农药残量与用水量的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)若用解析式
(Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据)
附:参考公式:回归方程中斜率和截距的最小二乘估计公式分别为: