题目内容
求证:
+
+…+
=
+
+…+
.
1 |
1×2 |
1 |
3×4 |
1 |
(2n-1)•2n |
1 |
n+1 |
1 |
n+2 |
1 |
n+n |
分析:运用数学归纳法,分两步加以论证:①当n=1时,可得原等式为
=
,显然成立;②设当n=k时原等式成立,即有
+
+…+
=
+
+…+
,将此代入n=k+1的式子并利用
=
-
进行化简,可证出当n=k+1的式子左右两边也相等.最后由①②相结合,可得原等式以任意的n∈N*恒成立.
1 |
2 |
1 |
2 |
1 |
1×2 |
1 |
3×4 |
1 |
(2k-1)•2k |
1 |
k+1 |
1 |
k+2 |
1 |
2k |
1 |
(2k+1)(2k+2) |
1 |
2k+1 |
1 |
2k+2 |
解答:解:①当n=1时,左边=
=
,右边=
=
,等式成立.
②假设当n=k时等式成立,即
+
+…+
=
+
+…+
.
则当n=k+1时,
+
+…+
+
=
+
+…+
+
=
+
+…+
+(
+
)
=
+
+…+
+(
+
-
)
=
+
+…+
+
+
=
+
+…+
+
,
即当n=k+1时,等式成立.
根据(1)(2)可知,对一切n∈N*,原等式成立.
1 |
1×2 |
1 |
2 |
1 |
1+1 |
1 |
2 |
②假设当n=k时等式成立,即
1 |
1×2 |
1 |
3×4 |
1 |
(2k-1)•2k |
1 |
k+1 |
1 |
k+2 |
1 |
2k |
则当n=k+1时,
1 |
1×2 |
1 |
3×4 |
1 |
(2k-1)•2k |
1 |
(2k+1)(2k+2) |
=
1 |
k+1 |
1 |
k+2 |
1 |
2k |
1 |
(2k+1)(2k+2) |
=
1 |
k+2 |
1 |
k+3 |
1 |
2k |
1 |
k+1 |
1 |
(2k+1)(2k+2) |
=
1 |
k+2 |
1 |
k+3 |
1 |
2k |
2 |
2k+2 |
1 |
2k+1 |
1 |
2k+2 |
=
1 |
k+2 |
1 |
k+3 |
1 |
2k |
1 |
2k+1 |
1 |
2k+2 |
=
1 |
(k+1)+1 |
1 |
(k+1)+2 |
1 |
(k+1)+k |
1 |
(k+1)+(k+1) |
即当n=k+1时,等式成立.
根据(1)(2)可知,对一切n∈N*,原等式成立.
点评:本题给出一个恒等式,要求我们利用数学归纳法进行证明.着重考查了数列的通项写法、裂项法证明等式和数学归纳法的一般方法等知识,属于中档题.
练习册系列答案
相关题目