题目内容
已知数列{an}的前n项和为Sn满足:Sn=
(an-1)(a为常数,且a≠0,a≠1)
(1)若a=2,求数列{an}的通项公式
(2)设bn=
+1,若数列{bn}为等比数列,求a的值.
(3)在满足条件(2)的情形下,设cn=
+
,数列{cn}前n项和为Tn,求证Tn>2n-
.
a |
a-1 |
(1)若a=2,求数列{an}的通项公式
(2)设bn=
2Sn |
an |
(3)在满足条件(2)的情形下,设cn=
1 |
1+an |
1 |
1-an+1 |
1 |
3 |
分析:(1)当a=2时,Sn=2an-2,当n≥2时,Sn=2an-2Sn-1=2an-1′-2,两式相减得到递推公式,再求解.
(2)由(1)知,bn=
+1=
,利用特殊项,必有b22=b1b3,求出a,再回代验证,确定a的值.
(3)由(2)知an=(
)n,可得cn=
+
=
+
=
+
=1-
+1+
=2-(
-
),直接求和不易化简计算,先进行放缩得出cn=2-(
-
)>2-(
-
),求和及证明可行.
(2)由(1)知,bn=
2•
| ||
an |
(3a-1)an-2a |
an(a-1) |
(3)由(2)知an=(
1 |
3 |
1 | ||
1+(
|
1 | ||
1-(
|
3n |
3n+1 |
3n+1 |
3n+1-1 |
3n+1-1 |
3n+1 |
3n+1-1+1 |
3n+1-1 |
1 |
3n+1 |
1 |
3n+1-1 |
1 |
3n+1 |
1 |
3n+1-1 |
1 |
3n+1 |
3 |
3n+1-1 |
1 |
3n |
1 |
3n+1 |
解答:解:(1)当a=2时,Sn=2an-2
当n=1时,S1=2a1-2⇒a1=2…(1分)
当n≥2时,Sn=2an-2Sn-1=2an-1′-2…(2分)
两式相减得到an=2an-2an-1,(an-1≠0)得到
=2…(3分)an=2n…(4分)
(2)由(1)知,bn=
+1=
,
若{bn}为等比数列,
则有b22=b1b3,而b1=3,b2=
,b3=
,
故(
)2=3•
,解得a=
,再将a=
代入得bn=3n成立,所以a=
. …(9分)
(3)证明:由(2)知an=(
)n,
所以cn=
+
=
+
=
+
=1-
+1+
=2-(
-
),…11
由
<
,
>
得
-
<
-
,
所以cn=2-(
-
)>2-(
-
),…13
从而Tn=c1+c2+…+cn>[2-(
-
)]+[2-(
-
)]+…[2-(
-
)]=2n-[(
-
)+(
-
)+…+(
-
)]=2n-(
-
)>2n-
.
即Tn>2n-
.…14
当n=1时,S1=2a1-2⇒a1=2…(1分)
当n≥2时,Sn=2an-2Sn-1=2an-1′-2…(2分)
两式相减得到an=2an-2an-1,(an-1≠0)得到
an |
an-1 |
(2)由(1)知,bn=
2•
| ||
an |
(3a-1)an-2a |
an(a-1) |
若{bn}为等比数列,
则有b22=b1b3,而b1=3,b2=
3a+2 |
a |
3a2+2a+2 |
a2 |
故(
3a+2 |
a |
3a2+2a+2 |
a2 |
1 |
3 |
1 |
3 |
1 |
3 |
(3)证明:由(2)知an=(
1 |
3 |
所以cn=
1 | ||
1+(
|
1 | ||
1-(
|
3n |
3n+1 |
3n+1 |
3n+1-1 |
3n+1-1 |
3n+1 |
3n+1-1+1 |
3n+1-1 |
1 |
3n+1 |
1 |
3n+1-1 |
1 |
3n+1 |
1 |
3n+1-1 |
由
1 |
3n+1 |
1 |
3n |
1 |
3n+1-1 |
1 |
3n+1 |
1 |
3n+1 |
1 |
3n+1-1 |
1 |
3n |
1 |
3n+1 |
所以cn=2-(
1 |
3n+1 |
3 |
3n+1-1 |
1 |
3n |
1 |
3n+1 |
从而Tn=c1+c2+…+cn>[2-(
1 |
3 |
1 |
32 |
1 |
32 |
1 |
33 |
1 |
3n |
1 |
3n+1 |
1 |
3 |
1 |
32 |
1 |
32 |
1 |
33 |
1 |
3n |
1 |
3n+1 |
1 |
3 |
1 |
3n+1 |
1 |
3 |
即Tn>2n-
1 |
3 |
点评:本题考查数列通项公式求解,数列性质的判断,数列求和及放缩法证明不等式,灵活的考查了知识,具有一定的综合性,属于中档题,也是好题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
A、16 | B、8 | C、4 | D、不确定 |