题目内容

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

算得,

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

参照附表,得到的正确结论是(
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”

【答案】C
【解析】解:由题意算得,

∵7.8>6.635,

∴有0.01=1%的机会错误,

即有99%以上的把握认为“爱好这项运动与性别有关”

故选:C.

题目的条件中已经给出这组数据的观测值,我们只要把所给的观测值同节选的观测值表进行比较,发现它大于6.635,得到有99%以上的把握认为“爱好这项运动与性别有关”.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网