ÌâÄ¿ÄÚÈÝ
Èçͼ£¬P1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©¡¢¡¡¢Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡£¼yn£© ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êԵ㣩£®
£¨1£©Çóa1¡¢a2¡¢a3µÄÖµ£»
£¨2£©Çó³öµãAn£¨an£¬0£©£¨n¡ÊN+£©µÄºá×ø±êanºÍµãAn-1£¨an-1£¬0£©£¨n£¾0£¬n¡ÊN+£©ºá×ø±êan-1µÄ¹Øϵʽ£»
£¨3£©¸ù¾Ý£¨1£©µÄ½áÂÛ²ÂÏëan¹ØÓÚnµÄ±í´ïʽ£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®
£¨1£©Çóa1¡¢a2¡¢a3µÄÖµ£»
£¨2£©Çó³öµãAn£¨an£¬0£©£¨n¡ÊN+£©µÄºá×ø±êanºÍµãAn-1£¨an-1£¬0£©£¨n£¾0£¬n¡ÊN+£©ºá×ø±êan-1µÄ¹Øϵʽ£»
£¨3£©¸ù¾Ý£¨1£©µÄ½áÂÛ²ÂÏëan¹ØÓÚnµÄ±í´ïʽ£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®
·ÖÎö£º£¨1£©ÀûÓÃÒÑÖªÌõ¼þÖ±½ÓÇóa1¡¢a2¡¢a3µÄÖµ£»
£¨2£©Ó루1£©ÀàËÆÇó³öÖ±Ïߵķ½³Ì£¬Í¨¹ýÇó³öµãAn£¨an£¬0£©£¨n¡ÊN+£©µÄºá×ø±êanÓëµãAn-1£¨an-1£¬0£©£¨n£¾0£¬n¡ÊN+£©ºá×ø±êan-1¼´¿ÉµÃµ½(an-an-1)2=2(an-1+an)£»
£¨3£©¸ù¾Ý£¨1£©µÄ½áÂÛ²ÂÏëan¹ØÓÚnµÄ±í´ïʽ£¬Ö±½ÓÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷²½ÖèÖ¤Ã÷¼´¿É£®
£¨2£©Ó루1£©ÀàËÆÇó³öÖ±Ïߵķ½³Ì£¬Í¨¹ýÇó³öµãAn£¨an£¬0£©£¨n¡ÊN+£©µÄºá×ø±êanÓëµãAn-1£¨an-1£¬0£©£¨n£¾0£¬n¡ÊN+£©ºá×ø±êan-1¼´¿ÉµÃµ½(an-an-1)2=2(an-1+an)£»
£¨3£©¸ù¾Ý£¨1£©µÄ½áÂÛ²ÂÏëan¹ØÓÚnµÄ±í´ïʽ£¬Ö±½ÓÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷²½ÖèÖ¤Ã÷¼´¿É£®
½â´ð£º½â£º£¨1£©ÒÀÌâÒ⣬OP1Ö±Ïß·½³ÌΪy=
xÓëÇúÏß·½³Ìy2=3xÁªÁ¢
½âµÃP1µãµÄºá×ø±êΪx1=1£¬ÓÉÖеã×ø±ê¹«Ê½µÃa1=2 ¡£¨2·Ö£©
ͬÀí£ºA1P2Ö±Ïß·½³ÌΪy=
£¨x-2£©´úÈëy2=3xÇóµÃx2=4 ¡£¨3·Ö£©
ÔÙÓÉÖеã×ø±ê¹«Ê½µÃa2=6£¬
A2P2Ö±Ïß·½³ÌΪy=
£¨x-6£©´úÈëy2=3xÇóµÃx3=9
ÔÙÓÉÖеã×ø±ê¹«Ê½µÃa3=12£¬¡£¨4·Ö£©
£¨2£©ÒÀÌâÒ⣬µÃxn=
¢Ù¡£¨5·Ö£©
Ö±ÏßAn-1PnµÄ·½³ÌΪy=
£¨x-an-1£©
Pn£¨xn£¬yn£©×ø±êÂú×ã·½³Ì£¬ÔòÓÐyn=
£¨xn-an-1£©¢Ú¡£¨6·Ö£©
°Ñ¢Ù´úÈë¢ÚʽµÃ yn=
£¨
-an-1£©=
•
¢Û£¨7·Ö£©
ÒòΪyn2=3xn ¢Ü¡£¨8·Ö£©
°Ñ¢Ûʽ´úÈë¢ÜµÃ
(
•
)2=
(an+an-1)£¬
¼´(an-an-1)2=2(an-1+an)¡£¨9·Ö£©
£¨3£©ÓÉ£¨¢ñ£©¿É²ÂÏ룺an=n£¨n+1£©£¬n¡ÊN+£©£® £¨10·Ö£©
ÏÂÃæÓÃÊýѧ¹éÄÉ·¨ÓèÒÔÖ¤Ã÷£º
£¨1£©µ±n=1ʱ£¬ÃüÌâÏÔÈ»³ÉÁ¢£»
£¨2£©¼Ù¶¨µ±n=kʱÃüÌâ³ÉÁ¢£¬¼´ÓÐak=k£¨k+1£©£¬¡£¨11·Ö£©
Ôòµ±n=k+1ʱ£¬ÓɹéÄɼÙÉè¼°
(ak+1-ak)2=2(ak+ak+1)µÃ[ak+1-k(k+1)]2=2[k(k+1)]+ak+1£¬¼´
£¨ak+1£©2-2£¨k2+k+1£©ak+1+[k£¨k+1£©]•[£¨k+1£©£¨k+2£©]=0£¬
½âÖ®µÃ£ºak+1=£¨k+1£©£¨k+2£©£¬£¨ak+1=k£¨k-1£©£¬²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
¼´µ±n=k+1ʱ£¬ÃüÌâ³ÉÁ¢£® ¡£¨13·Ö£©
ÓÉ£¨1£©¡¢£¨2£©Öª£ºÃüÌâ³ÉÁ¢£® ¡£¨14·Ö£©
3 |
½âµÃP1µãµÄºá×ø±êΪx1=1£¬ÓÉÖеã×ø±ê¹«Ê½µÃa1=2 ¡£¨2·Ö£©
ͬÀí£ºA1P2Ö±Ïß·½³ÌΪy=
3 |
ÔÙÓÉÖеã×ø±ê¹«Ê½µÃa2=6£¬
A2P2Ö±Ïß·½³ÌΪy=
3 |
ÔÙÓÉÖеã×ø±ê¹«Ê½µÃa3=12£¬¡£¨4·Ö£©
£¨2£©ÒÀÌâÒ⣬µÃxn=
an-1+an |
2 |
Ö±ÏßAn-1PnµÄ·½³ÌΪy=
3 |
Pn£¨xn£¬yn£©×ø±êÂú×ã·½³Ì£¬ÔòÓÐyn=
3 |
°Ñ¢Ù´úÈë¢ÚʽµÃ yn=
3 |
an-1+an |
2 |
3 |
an-an-1 |
2 |
ÒòΪyn2=3xn ¢Ü¡£¨8·Ö£©
°Ñ¢Ûʽ´úÈë¢ÜµÃ
(
3 |
an-an-1 |
2 |
3 |
2 |
¼´(an-an-1)2=2(an-1+an)¡£¨9·Ö£©
£¨3£©ÓÉ£¨¢ñ£©¿É²ÂÏ룺an=n£¨n+1£©£¬n¡ÊN+£©£® £¨10·Ö£©
ÏÂÃæÓÃÊýѧ¹éÄÉ·¨ÓèÒÔÖ¤Ã÷£º
£¨1£©µ±n=1ʱ£¬ÃüÌâÏÔÈ»³ÉÁ¢£»
£¨2£©¼Ù¶¨µ±n=kʱÃüÌâ³ÉÁ¢£¬¼´ÓÐak=k£¨k+1£©£¬¡£¨11·Ö£©
Ôòµ±n=k+1ʱ£¬ÓɹéÄɼÙÉè¼°
(ak+1-ak)2=2(ak+ak+1)µÃ[ak+1-k(k+1)]2=2[k(k+1)]+ak+1£¬¼´
£¨ak+1£©2-2£¨k2+k+1£©ak+1+[k£¨k+1£©]•[£¨k+1£©£¨k+2£©]=0£¬
½âÖ®µÃ£ºak+1=£¨k+1£©£¨k+2£©£¬£¨ak+1=k£¨k-1£©£¬²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
¼´µ±n=k+1ʱ£¬ÃüÌâ³ÉÁ¢£® ¡£¨13·Ö£©
ÓÉ£¨1£©¡¢£¨2£©Öª£ºÃüÌâ³ÉÁ¢£® ¡£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓë½âÎö¼¸ºÎÏà½áºÏµÄÎÊÌ⣬ֱÏßÓëÅ×ÎïÏßµÄλÖùØϵ£¬ÊýÁеĺ¯ÊýµÄÌØÕ÷£¬Êýѧ¹éÄÉ·¨µÄÓ¦Ó㬿¼²éÂß¼ÍÆÀíÄÜÁ¦ÒÔ¼°¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿