题目内容
已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.
(1)求a、b间关系;
(2)求|PQ|的最小值;
(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.
解:(1)连接OQ、OP,则△OQP为直角三角形,
又|PQ|=|PA|,
所以|OP|2=|OQ|2+|PQ|2
=1+|PA|2,
所以a2+b2=1+(a-2)2+(b-1)2,
故2a+b-3=0.
(2)由(1)知,P在直线l:2x+y-3=0上,
所以|PQ|min=|PA|min,为A到直线l的距离,
所以|PQ|min==.
(或由|PQ|2=|OP|2-1=a2+b2-1=a2+9-12a+4a2-1=5a2-12a+8=5(a-1.2)2+0.8,得|PQ|min=.)
(3)以P为圆心的圆与圆O有公共点,半径最小时为与圆O相切的情形,而这些半径的最小值为圆O到直线l的距离减去圆O的半径,圆心P为过原点与l垂直的直线l′与l的交点P0,所以r=-1=-1,
又l′:x-2y=0,
联立l:2x+y-3=0得P0(,).
所以所求圆的方程为(x-)2+(y-)2=(-1)2.
练习册系列答案
相关题目