题目内容
20.求下列各式的值.(1)$lo{g}_{5}35+2lo{g}_{\frac{1}{2}}\sqrt{2}-lo{g}_{5}\frac{1}{50}-lo{g}_{5}14$;
(2)lg52+$\frac{2}{3}lg8+lg5•lg20+l{g}^{2}2$;
(3)$\frac{lg\sqrt{2}+lg3-lg\sqrt{10}}{lg1.8}$.
分析 (1)(2)(3)利用对数的运算性质即可得出.
解答 解:(1)原式=log535+2×$\frac{\frac{1}{2}lg2}{-lg2}$+log550-log514
=$lo{g}_{5}\frac{35×50}{14}$-1
=$lo{g}_{5}{5}^{3}$-1
=3-1=2.
(2)原式=2lg5+$\frac{2}{3}×3lg2$+lg5(2lg2+lg5)+lg22
=2(lg5+lg2)+(lg5+lg2)2
=2+1=3.
(3)原式=$\frac{lg\frac{3\sqrt{2}}{\sqrt{10}}}{lg\frac{9}{5}}$
=$\frac{lg\frac{3}{\sqrt{5}}}{2lg\frac{3}{\sqrt{5}}}$
=$\frac{1}{2}$.
点评 本题考查了对数的运算性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
11.函数y=2+$\sqrt{5+4x-{x}^{2}}$的值域是( )
A. | {y|y≥2} | B. | {y|2≤y≤5} | C. | {y|y≥4} | D. | {y|y≤2} |