题目内容
【题目】经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(1)将T表示为x的函数;
(2)根据直方图估计利润T不少于57000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.
【答案】
(1)解:由题意得,当x∈[100,130)时,T=500x﹣300(130﹣x)=800x﹣39000,
当x∈[130,150)时,T=500×130=65000,
∴T= .
(2)解:由(1)知,利润T不少于57000元,当且仅当120≤x≤150.
由直方图知需求量X∈[120,150]的频率为0.7,
所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.
(3)解:依题意可得T的分布列如图,
T | 45000 | 53000 | 61000 | 65000 |
p | 0.1 | 0.2 | 0.3 | 0.4 |
所以ET=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.
【解析】(1)由题意先分段写出,当x∈[100,130)时,当x∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(2)由(1)知,利润T不少于57000元,当且仅当120≤x≤150.再由直方图知需求量X∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T不少于57000元的概率的估计值.(3)利用利润T的数学期望=各组的区间中点值×该区间的频率之和即得.
【考点精析】本题主要考查了频率分布直方图和用样本的频率分布估计总体分布的相关知识点,需要掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息;样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚的看到整个样本数据的频率分布情况,并由此估计总体的分布情况才能正确解答此题.