题目内容

【题目】若函数f(x)在定义域上存在区间[a,b](ab>0),使f(x)在[a,b]上值域为[ ],则称f(x)在[a,b]上具有“反衬性”.下列函数①f(x)=﹣x+ ②f(x)=﹣x2+4x ③f(x)=sin x ④f(x)= ,具有“反衬性”的为|(
A.②③
B.①③
C.①④
D.②④

【答案】B
【解析】解:若函数f(x)在定义域上存在区间[a,b](ab>0),使f(x)在[a,b]上值域为[ ],则等价为函数f(x)与y= 有两个交点,且函数在区间上单调递减即可.
①若f(x)=﹣x+ ,作出函数f(x)与y= 的图象,由图象知两个函数有两个交点,则f(x)具有“反衬性”,

②若f(x)=﹣x2+4x,作出函数f(x)与y= 的图象,由图象知两个函数有两个交点,但函数在交点对应的区间上不具单调性,则f(x)不具有“反衬性”,

③f(x)=sin x,作出函数f(x)与y= 的图象,由图象知两个函数有两个交点,函数在交点对应的区间上单调递减,则f(x)具有“反衬性”,

④f(x)=
当2<x<3时,f(x)= f(x﹣1)= [﹣|x﹣2|+1]=﹣ |x﹣2|+
当3<x<4时,f(x)= f(x﹣1)= [﹣ |x﹣3|+ ]=﹣ |x﹣2|+

作出函数f(x)与y= 的图象,由图象知两个函数有两个交点,函数在交点对应的区间上不单调递减,则f(x)不具有“反衬性”,
综上具有“反衬性”的函数是①③,
故选:B
【考点精析】利用函数的定义域及其求法和函数的值域对题目进行判断即可得到答案,需要熟知求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关题目

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网