题目内容

如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(1)求证:D1C⊥AC1
(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.

【答案】分析:(1)要证D1C⊥AC1;需证D1C⊥平面ADC1即可
(2)确定E的位置,使D1E∥平面A1BD,设AD1∩A1D=M,BD∩AE=N,连接MN,证明MN∥D1E即可.
解答:解:(1)证明:在直四棱柱ABCD-A1B1C1D1中,
连接C1D,∵DC=DD1
∴四边形DCC1D1是正方形.∴DC1⊥D1C.
又AD⊥DC,AD⊥DD1,DC⊥DD1=D,
∴AD⊥平面DCC1D1,D1C?平面DCC1D1
∴AD⊥D1C.∵AD,DC1?平面ADC1
且AD⊥DC=D,∴D1C⊥平面ADC1
又AC1?平面ADC1,∴D1C⊥AC1

(2)连接AD1,连接AE,
设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,
要使D1E∥平面A1BD,
须使MN∥D1E,
又M是AD1的中点.∴N是AE的中点.
又易知△ABN≌△EDN,∴AB=DE.
即E是DC的中点.
综上所述,当E是DC的中点时,可使D1E∥平面A1BD.
点评:本题考查直线与平面的平行,空间中直线与平面的位置关系,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网