搜索
题目内容
函数
有且仅有一个正实数的零点,则实数
的取值范围是( )
(A)
(B)
(C)
(D)
试题答案
相关练习册答案
【答案】
B
【解析】略
练习册系列答案
渔夫阅读系列答案
实验操作练习册系列答案
高效测评课课小考卷系列答案
课堂练习册系列答案
教材解读系列答案
新教材完全解读系列答案
高效学习法系列答案
活页单元测评卷系列答案
配套练习与检测系列答案
前沿课时设计系列答案
相关题目
已知函数f(x)=
a
•(
b
+
a
)
,其中
a
=(coswx,0)
,
b
=(
3
sinwx,1)
,且w为正实数.
(1)求f(x)的最小值;
(2)对任意m∈R,函数y=f(x),x∈[m,m+4π]的图象与直线2y+1=0有且仅有一个交点,试判断函数f(x+
2π
3
)的奇偶性,并说明理由.
已知函数f(x)=
a
•(
b
-
a
),其中
a
=(cosωx,0),
b
=(
3
sinωx,1),且ω为正实数.
(1)求f(x)的最大值;
(2)对任意m∈R,函数y=f(x),x∈[m,m+π]的图象与直线y=
1
2
有且仅有一个交点,求ω的值,并求满足f(x)=
3
-1
2
,x∈[
π
12
,
7π
12
]的x的值.
函数f(x)=mx
2
-2x+1有且仅有一个为正实数的零点,则实数m的取值范围是( )
A.(-∞,1]
B.(-∞,0]∪{1}
C.(-∞,0)∪(0,1]
D.(-∞,1)
(2012•黄浦区二模)已知函数y=f(x)是定义域为R的偶函数,且对x∈R,恒有f(1+x)=f(1-x).又当x∈[0,1]时,f(x)=x.
(1)当x∈[-1,0]时,求f(x)的解析式;
(2)求证:函数y=f(x)(x∈R)是以T=2为周期的周期函数;
(3)解答本小题考生只需从下列三个问题中选择一个写出结论即可(无需写解题步骤).注意:考生若选择多于一个问题解答,则按分数最低一个问题的解答正确与否给分.
①当x∈[2n-1,2n](n∈Z)时,求f(x)的解析式.
②当x∈[2n-1,2n+1](其中n是给定的正整数)时,若函数y=f(x)的图象与函数y=kx的图象有且仅有两个公共点,求实数k的取值范围.
③当x∈[0,2n](n是给定的正整数且n≥3)时,求f(x)的解析式.
设函数
h
t
(x)=3tx-2
t
3
2
,若有且仅有一个正实数x
0
,使得h
4
(x
0
)≥h
t
(x
0
)对任意的正实数t成立,则x
0
=
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总