题目内容

已知函数f(x)=
a
•(
b
-
a
),其中
a
=(cosωx,0),
b
=(
3
sinωx,1),且ω为正实数.
(1)求f(x)的最大值;
(2)对任意m∈R,函数y=f(x),x∈[m,m+π]的图象与直线y=
1
2
有且仅有一个交点,求ω的值,并求满足f(x)=
3
-1
2
,x∈[
π
12
12
]的x的值.
分析:(1)由函数f(x)=
a
•(
b
-
a
),其中
a
=(cosωx,0),
b
=(
3
sinωx,1),求出函数的解析式,进而根据正弦型函数的图象和性质,可得函数的最大值;
(2)根据函数y=f(x),x∈[m,m+π]的图象与直线y=
1
2
有且仅有一个交点,可得函数的周期为π,进而构造三角方程,求出x的值.
解答:解:(1)∵
a
=(cosωx,0),
b
=(
3
sinωx,1),
∴f(x)=
a
•(
b
-
a
)=(cosωx,0)•(
3
sinωx-cosωx,1)=
3
sinωx•cosωx-cosωx•cosωx
=
3
2
sin(2ωx)-
1
2
cos(2ωx)-
1
2
=sin(2ωx-
π
6
)-
1
2

∵A=1,B=-
1
2

∴f(x)max=
1
2

(2)∵T=π,ω为正实数.
∴ω=1
∴f(x)=sin(2x-
π
6
)-
1
2
=
3
-1
2

∴sin(2x-
π
6
)=
3
2

∵x∈[
π
12
12
]
∴2x-
π
6
∈[0,π]
∴2x-
π
6
=
π
3
,或2x-
π
6
=
3

∴x=
π
4
,或x=
12
点评:本题考查的知识点是平面向量的数量积,正弦型函数的图象和性质,其中根据平面向量的数量积,求出函数的解析式是解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网