题目内容
已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,则在R上f(x)的表达式为( )A.-x(x-2) B.x(|x|-2)
C.|x|(x-2) D.|x|(|x|-2)
解析:设x<0,则-x>0,
∵f(x)是奇函数,
∴f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x.
∴f(x)=
即f(x)=x(|x|-2).故选B.
答案:B
练习册系列答案
相关题目
题目内容
已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,则在R上f(x)的表达式为( )A.-x(x-2) B.x(|x|-2)
C.|x|(x-2) D.|x|(|x|-2)
解析:设x<0,则-x>0,
∵f(x)是奇函数,
∴f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x.
∴f(x)=
即f(x)=x(|x|-2).故选B.
答案:B