题目内容
已知函数在区间 上的最大值为2.(1)求常数的值;(2)在中的角,,所对的边是,,,若,面积为. 求边长.
(1)(2)
解析
如图,两座建筑物AB,CD的高度分别是9m和15m,从建筑物AB的顶部看建筑物CD的张角,求建筑物AB和CD底部之间的距离BD。
如图,要计算西湖岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两点,现测得,,,,,求两景点B与C的距离.
如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,,,.(1)当时,求的大小;(2)求的面积S的最小值及使得S取最小值时的值.
(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB(p∈R).且ac=b2.(1)当p=,b=1时,求a,c的值;(2)若角B为锐角,求p的取值范围.
在ABC中,已知B=45AD=5,Ac=7,Dc=3,是上一点,,求的长.
叙述并证明余弦定理.
在△ABC中,已知B=45°,D是BC边上一点,AD=10,AC=14,DC=6,求AB的长.
(2013•湖北)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sinBsinC的值.