题目内容
已知:2x≤256且log2x≥
,
(1)求x的取值范围;
(2)求函数f(x)=log2 (
)•log
(
)的最大值和最小值.
1 |
2 |
(1)求x的取值范围;
(2)求函数f(x)=log2 (
x |
2 |
2 |
| ||
2 |
(1)由2x≤256得x≤8,log2x≥
得x≥
,∴
≤x≤8.
(2)由(1)
≤x≤8得
≤log2x≤3,
f(x)=log2 (
)•log
(
)=(log2x-log22)(log
-log
2)
∴f(x)=(log2x-1)(log2x-2)=(log2x-
)2-
,
当log2x=
,f(x)min=-
.
当log2x=3,f(x)max=2.
1 |
2 |
2 |
2 |
(2)由(1)
2 |
1 |
2 |
f(x)=log2 (
x |
2 |
2 |
| ||
2 |
2 |
x |
2 |
∴f(x)=(log2x-1)(log2x-2)=(log2x-
3 |
2 |
1 |
4 |
当log2x=
3 |
2 |
1 |
4 |
当log2x=3,f(x)max=2.
练习册系列答案
相关题目