题目内容
设是由个实数组成的行列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(Ⅰ) 数表如表所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);
1 |
2 |
3 |
|
1 |
0 |
1 |
(Ⅱ) 数表如表所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数的所有可能值;
(Ⅲ)对由个实数组成的行列的任意一个数表,
能否经过有限次“操作”以后,使得到的数表每行的各数之
和与每列的各数之和均为非负整数?请说明理由.
(Ⅰ)
(Ⅱ) (Ⅲ)结论成立
【解析】
试题分析:(I)
法1:
法2:
法3:
(写出一种即可)
(II) 每一列所有数之和分别为2,0,,0,每一行所有数之和分别为,1;
①如果操作第三列,则
则第一行之和为,第二行之和为,
,解得.
②如果操作第一行
则每一列之和分别为,,,
解得,综上
(III) 证明:按要求对某行(或某列)操作一次时,则该行的行和(或该列的列和)
由负整数变为正整数,都会引起该行的行和(或该列的列和)增大,从而也就使得
数阵中个数之和增加,且增加的幅度大于等于,但是每次操作都只
是改变数表中某行(或某列)各数的符号,而不改变其绝对值,显然,数表中
个数之和必然小于等于,可见其增加的趋势必在有限次之后终止,终止
之时必然所有的行和与所有的列和均为非负整数,故结论成立
考点:规律型 数字的变化类.
点评:本题考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.
设是由个实数组成的行列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(1)数表如表1所示,若经过两“操”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1
1 |
2 |
3 |
|
1 |
0 |
1 |
(2)数表如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数的所有可能值;表2
(3)对由个实数组成的行列的任意一个数表,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负实数?请说明理由.
设是由个实数组成的行列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(Ⅰ) 数表如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);
表1
1 |
2 |
3 |
|
1 |
0 |
1 |
(Ⅱ) 数表如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数的所有可能值;
表2
(Ⅲ)对由个实数组成的行列的任意一个数表,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.
(2012年高考(北京理))设A是由个实数组成的行列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记为所有这样的数表构成的集合.
对于,记为A的第行各数之和,为A的第列各数之和;
记为,,…,,,,…,中的最小值.
(1)对如下数表A,求的值;
1 | 1 | -0.8 |
0.1 | -0.3 | -1 |
(2)设数表A=形如
1 | 1 | 1 |
-1 |
求的最大值;
(3)给定正整数,对于所有的A∈S(2,),求的最大值。